Respuesta :
Answer:
ΔL = 0.02315 m = 23.15 mm
Explanation:
σ₁ = 345 MPa
ε₁ = 0.02
σ₂ = 415 MPa
L₀ = 500 mm = 0.50 m
n = 0.22
We can apply the following equation
σ = σ₀*εⁿ
then
σ₁ = σ₀*ε₁ⁿ ⇒ σ₀ = σ₁ / ε₁ⁿ
⇒ σ₀ = 345 MPa / (0.02)∧(0.22)
⇒ σ₀ = 815.8165 MPa
Now,
σ₂= σ₀*ε₂ⁿ ⇒ ε₂ = (σ₂ / σ₀)∧(1 / n)
⇒ ε₂ = (415 MPa / 815.8165 MPa)∧(1 / 0.22)
⇒ ε₂ = 0.0463
we now that
ε = ΔL / L₀ ⇒ ΔL = ε₂*L₀
⇒ ΔL = 0.0463*0.50 m
⇒ ΔL = 0.02315 m = 23.15 mm
When a true stress of 415 MPa is applied, the elongation will be "15.85 mm".
Stress and Strain
According to the question,
True stress, r₁ = 375 MPa
r₂ = 415 MPa
True strain, [tex]\varepsilon_1[/tex] = 0.02
Strain hardening exponent, n = 0.22
Original length = 500 mm
By using Holloman's equation, we get
→ r = K[tex]\varepsilon^n[/tex]
r ∝ [tex]\varepsilon^n[/tex]
or,
[tex]\frac{r_1}{r_2} = (\frac{\varepsilon_1}{\varepsilon_2} )^n[/tex]
By substituting the values, we get
[tex]\frac{375}{415} = (\frac{0.02}{\varepsilon_2})^{0.22}[/tex]
[tex][\frac{375}{415}]^{\frac{1}{0.22} } =\frac{0.22}{\varepsilon_2}[/tex]
[tex]\varepsilon_2[/tex] = 0.31703
hence,
→ Strain = [tex]\frac{Elongation}{500}[/tex]
By substituting the values,
0.31703 = [tex]\frac{Elongation}{500}[/tex]
Elongation = 0.31703 × 500
= 15.85 mm
Thus the response above is correct.
Find out more information about elongation here:
https://brainly.com/question/734845