Respuesta :
Answer:
[tex]\large\boxed{3\sqrt{10}\approx(3)(3.16)=9.48}[/tex]
Step-by-step explanation:
[tex]\text{The geometric mean formula:}\\\\\sqrt[n]{a_1\cdot a_2\cdot a_3\cdot...\cdot a_n}\\\\\text{We have}\ 6\ \text{and}\ 15.\ \text{Substitute:}\\\\\sqrt{(6)(15)}=\sqrt{90}=\sqrt{(9)(10)}=\sqrt9\cdot\sqrt{10}=3\sqrt{10}\approx(3)(3.16)=9.48[/tex]
The the geometric mean is 9.48
we have given the two numbers 6 and 15
What is the formula for geometric?
[tex]\sigma ^2=\sqrt[n]{x_{1}x_{2}......x_{n}}[/tex]
we have to find the geometric mean of 6 and 15
[tex]\sigma ^2=\sqrt{(6)(15)}[/tex]
[tex]\sigma ^2=\sqrt{(90)}[/tex]
[tex]\sigma ^2=\sqrt{(9)}\sqrt{10}[/tex]
[tex]\sigma ^2=3\sqrt{(10)}=9.48[/tex]
Therefore the the geometric mean is 9.48
To learn more about the geometric mean visit:
https://brainly.com/question/47038