Respuesta :
Answer:
1) x = (a+c)/b
2) The equation is correct no matter what value x takes.
Step-by-step explanation:
1) a−(a+b)x=(b−a)x−(c+bx)
<=> a - ax - bx = bx - ax - c - bx
<=> a - ax - bx - (bx - ax - c - bx) = 0
<=> a - ax - bx - bx + ax + c + bx = 0
<=> a - ax + ax - bx - bx + bx + c = 0
<=> a - bx + c = 0
<=> bx = a + c
If b ≠ 0, x = (a+c)/b
2) 2(3x−5a)+9(2a−7b)+3(5a−2x)=0
<=> 2×3x + 2×(-5a) + 9×2a + 9× (-7b) + 3×5a + 3×(-2x) = 0
<=> 6x -10a + 18a - 63b + 15a - 6x = 0
<=> (6x - 6x) + (15a - 10a + 18a) - 63b = 0
<=> 23a - 63b = 0
<=> 23a = 63b
=> a = 63b/23
with all values of x, the equation is correct.
Answer:
1) x= (a+c)/b if b ≠ 0
2) if a = 63b 23 then x = all real numbers
if a ≠ 63b 23 then x = no solutions
Step-by-step explanation: