Answer:
1027.62 g
Explanation:
For [tex]B_2H_6[/tex] :-
Mass of [tex]B_2H_6[/tex] = 296.1 g
Molar mass of [tex]B_2H_6[/tex] = 27.66 g/mol
The formula for the calculation of moles is shown below:
[tex]moles = \frac{Mass\ taken}{Molar\ mass}[/tex]
Thus,
[tex]Moles= \frac{296.1\ g}{27.66\ g/mol}[/tex]
[tex]Moles\ of\ B_2H_6= 10.705\ mol[/tex]
From the balanced reaction:-
[tex]B_2H_6(g) + 3 O2_{(l)}\rightarrow 2 HBO_2_{(g)}+ 2 H_2O_{(l)}[/tex]
1 mole of [tex]B_2H_6[/tex] react with 3 moles of oxygen
Thus,
10.705 mole of [tex]B_2H_6[/tex] react with 3*10.705 moles of oxygen
Moles of oxygen = 32.115 moles
Molar mass of oxygen gas = 31.998 g/mol
Mass = Moles * Molar mass = 32.115 * 31.998 g = 1027.62 g