Answer:
10 ft
Step-by-step explanation:
In order to solve this question, we need to set up a proportion:
[tex]\frac{\textrm{Height of mailbox}}{\textrm{Length of shadow}} = \frac{\textrm{Height of telephone pole}}{\textrm{Length of shadow}}[/tex]
Replacing with actual values:
[tex]\frac{45 \textrm{ in}}{22.5 \textrm{ in}} = \frac{20 \textrm{ ft}}{x \textrm{ ft}}[/tex]
Cross-multiplying:
[tex]45\times{x} = 20\times{22.5}\\45x = 450[/tex]
Dividing both sides by 45:
[tex]\frac{45x}{45} = \frac{450}{45}\\\\x = 10[/tex]
Therefore, the length of the telephone pole's shadow is 10 ft.