Answer:
required time is 5.7 seconds
Explanation:
solution
we first find here biot number by given formula that is
Bi = [tex]\frac{hL}{k}[/tex]
put here h is coefficient = 5000 and k = 50 W/m K and L is radius = [tex]\frac{0.02}{2}[/tex] = 0.01
so
Bi = [tex]\frac{5000 * 0.01}{50}[/tex]
Bi = 1
so for obtaining coefficient by table from term approx for the sphere at biot no 1
[tex]\xi[/tex] = 1.5708 and
C = 1.2732
so
and
center line temp. is here
θ* = [tex]\frac{\theta}{\theta1}[/tex]
θ* = [tex]\frac{T - Tx}{T1 - Tx}[/tex]
here T is 1000 K and Tx = 1300 K and T1 = 300 K
so
θ* = [tex]\frac{1000 - 1300 }{300-1300}[/tex]
θ* = 0.3
so
radius for steel ball bearing ratio is here
r* = [tex]\frac{r}{ro}[/tex]
here r is 10 -1 and ro is 10
so
r* = [tex]\frac{10-1}{10}[/tex]
r* = 0.9
so that
fourier no for term approx for sphere is here
Fo = [tex]\frac{-1}{\xi^2} ln[ \frac{\theta*}{C} \frac{1}{\xi * r} sin ( \xi * r)][/tex] ......1
put here value
Fo = [tex]\frac{-1}{1.5708^2} ln[ \frac{0.3}{1.2732} \frac{1}{1.5708*0.9} sin (1.5708*0.9 *\frac{180}{\pi})][/tex]
Fo = - 0.4053 ln ( 0.16462)
Fo = 0.7312
so time fpr 1 mm to 20 mm dia
Fo = [tex]\frac{\alpha*t}{r^2}[/tex]
Fo = [tex]\frac{kt}{\rho C r^2}[/tex]
0.7312 = [tex]\frac{50 * t}{7800 * 500*10^{-3} ^2[/tex]
t = 5.703 sec
so required time is 5.7 seconds