Answer:
V = 0.30787 m³/s
m = 2.6963 kg/s
v2 = 0.3705 m³/s
v2 = 6.017 m/s
Explanation:
given data
diameter = 28 cm
steadily =200 kPa
temperature = 20°C
velocity = 5 m/s
solution
we know mass flow rate is
m = ρ A v
floe rate V = Av
m = ρ V
flow rate = V = [tex]\frac{m}{\rho}[/tex]
V = Av = [tex]\frac{\pi}{4} * d^2 * v1[/tex]
V = [tex]\frac{\pi}{4} * 0.28^2 * 5[/tex]
V = 0.30787 m³/s
and
mass flow rate of the refrigerant is
m = ρ A v
m = ρ V
m = [tex]\frac{V}{v}[/tex] = [tex]\frac{0.30787}{0.11418}[/tex]
m = 2.6963 kg/s
and
velocity and volume flow rate at exit
velocity = mass × v
v2 = 2.6963 × 0.13741 = 0.3705 m³/s
and
v2 = A2×v2
v2 = [tex]\frac{v2}{A2}[/tex]
v2 = [tex]\frac{0.3705}{\frac{\pi}{4} * 0.28^2}[/tex]
v2 = 6.017 m/s