First we start withe the Hall-Pethch relation,
So,
[tex]\sigma_{y1} = \sigma_{0}+\frac{k_y}{\sqrt{d_1}}[/tex]
Where,
[tex]\sigma_{y1} [/tex] = Initial yield Strenght
[tex]d_1 =[/tex] Initial grain size of the alloy
Substituting,
[tex]109MPa = \sigma_0 + \frac{k_y}{\sqrt{4.5*10^-2mm}}[/tex]
We make the same relationship but now for the yield strength of 224MPa, so,
[tex]263MPa = \sigma_0 + \frac{k_y}{\sqrt{6.8*10^-3mm}}[/tex]
Solving,
[tex]\sigma_0 = 11.0655 MPa[/tex]
[tex]K_y= 20.7751 MPa.mm^{1/2}[/tex]
Hall-Petch relation is for the constant
[tex]\sigma_y = 11.0655MPa +\frac{20.7751MPa.mm^{1/2}}{\sqrt{d}}[/tex]
At end we make the sustitution for 224Mpa, so
[tex]\sigma_y=224MPa[/tex]
[tex]224MPa = 11.0655MPa +\frac{20.7751MPa-mm^{1/2}}{\sqrt{d}}[/tex]
[tex]d=\sqrt{0.0975657mm}[/tex]
[tex]d= 0.9877mm[/tex]