Respuesta :

Answer:

The completely factored form of  [tex]2x^{2}  - 32[/tex] =  [tex]2(x+ 4)(x-4)[/tex]

Step-by-step explanation:

Here, the given expression is : [tex]2x^{2}  - 32 = 0[/tex]

Now, simplifying the given expression , we get

[tex]2x^{2}  - 32 [/tex] =  [tex]2(x^{2}  - 16) [/tex]

Now, by ALGEBRAIC IDENTITY, we know that

[tex]a^{2} - b^{2}  = (a+b)(a - b)[/tex]

So, here [tex]x^{2} - (4)^{2}  = (x+4)(x - 4)[/tex]

⇒[tex]2(x^{2}  - 16) [/tex]  = [tex]2(x+ 4)(x-4) [/tex]

Hence, the completely factored form of  [tex]2x^{2}  - 32[/tex] =  [tex]2(x+ 4)(x-4)[/tex]

Answer: 2(x + 4)(x – 4)

Step-by-step explanation: just took the test