We know that,
[tex]I=I_oe^{-\mu R}[/tex]
With the dates that we have, we can calculate \mu for the bone and for the tissue, that is
[tex]\mu_{tissue}=0.15*1.5cm^{-1}[/tex]
[tex]\mu_{tissue}=0.225cm^{-1}[/tex]
And for the bone,
[tex]\mu_{bone}=0.14*3.8cm^{-1}[/tex]
[tex]\mu_{bone}=0.532cm^{-1}[/tex]
So, calculate I for left side,
For the tissue part,
[tex]I_1 = I_0e^{-0.225*1}\\I_1=I_0e^{-0.225}[/tex]
FOr the bone part,
[tex]I_2=I_0e^{-0.225}e^{-0.532*1}\\I_2=I_0e^{0.225+0.532}\\I_2=I_0e^{-0.757}[/tex]
And,
[tex]I_3=I_0e^{-0.757}e^{-0.225}\\I_3=I_0e^{-0.982}[/tex]
Final Intensity for the left side is given by,
[tex]I'=I_0e^{-0.982}\\\frac{I'}{I_0} = e^{-0.982}\\\frac{I'}{I_0}=0.374[/tex]
Moreover for the right side
[tex]I'=I_0e^{-0.225*3}\\I'=I_0e^{-0.675}[/tex]
[tex]\frac{I'}{I_0}=0.51[/tex]