Respuesta :

Answer:

The value of X = 3   And Y = 4  

Step-by-step explanation:

Given the linear system as :

2x + 3y = 6

-8x - 3y = 12

Apply Determinant method :

Dx = [tex]\begin{bmatrix}3 &6 \\ -3 & 12\end{bmatrix}[/tex]

Dy = [tex]\begin{bmatrix}2 &6 \\ -8 & 12\end{bmatrix}[/tex]

D =  [tex]\begin{bmatrix}2 &3 \\ -8 & -3\end{bmatrix}[/tex]

Or Dx = ( 36 + 18) = 54           Dy = (24 + 48) = 72     D = ( -6 +24) = 18

So, X = [tex]\frac{Dx}{D}[/tex] = [tex]\frac{54}{18}[/tex] = 3

And Y = [tex]\frac{Dy}{D}[/tex] = [tex]\frac{72}{18}[/tex] = 4

Hence the value of X =  3  And Y = 4  Answer