Answer:
The value of X = 3 And Y = 4
Step-by-step explanation:
Given the linear system as :
2x + 3y = 6
-8x - 3y = 12
Apply Determinant method :
Dx = [tex]\begin{bmatrix}3 &6 \\ -3 & 12\end{bmatrix}[/tex]
Dy = [tex]\begin{bmatrix}2 &6 \\ -8 & 12\end{bmatrix}[/tex]
D = [tex]\begin{bmatrix}2 &3 \\ -8 & -3\end{bmatrix}[/tex]
Or Dx = ( 36 + 18) = 54 Dy = (24 + 48) = 72 D = ( -6 +24) = 18
So, X = [tex]\frac{Dx}{D}[/tex] = [tex]\frac{54}{18}[/tex] = 3
And Y = [tex]\frac{Dy}{D}[/tex] = [tex]\frac{72}{18}[/tex] = 4
Hence the value of X = 3 And Y = 4 Answer