Answer:
Matrix transformation = [tex]\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex]
Vertices of the new image: P'= (5,-2), Q'= (6,-3), R'= (2,-3)
Step-by-step explanation:
Transformation by reflection will produce a new congruent object in different coordinate. Reflection to y-axis made by multiplying the x coordinate with -1 and keep the y coordinate unchanged. The matrix transformation for reflection across y-axis should be: [tex]\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex].
To find the coordinate of the vertices after transformation, you have to multiply the vertices with the matrix. The calculation of the each vertice will be:
P'= [tex]\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}-5\\-2\end{array}\right][/tex]= (5,-2)
Q'= [tex]\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}-6\\-3\end{array}\right][/tex]= (6,-3)
R'= [tex]\left[\begin{array}{ccc}-1&0\\0&1\end{array}\right][/tex] [tex]\left[\begin{array}{ccc}-2\\-3\end{array}\right][/tex]= (2,-3)