Respuesta :

Answer:

c. [tex]y=\frac{80}{x}[/tex]

Step-by-step explanation:

Given:

[tex]x[/tex] and [tex]y[/tex] vary inversely.

Therefore, we can express y in terms of x as:

[tex]y=\frac{k}{x}[/tex]

Where, [tex]k[/tex] is a constant of proportionality.

Now, at [tex]x=10,y=8[/tex]

Plug in 10 for [tex]x[/tex] and 8 for [tex]y[/tex] in the above equation and solve for [tex]k[/tex].

This gives,

[tex]8=\frac{k}{10}\\k=8\times 10=80[/tex]

Therefore, the function that models the inverse variation is :

[tex]y=\frac{k}{x}\\y=\frac{80}{x}[/tex].