Answer:
c. [tex]y=\frac{80}{x}[/tex]
Step-by-step explanation:
Given:
[tex]x[/tex] and [tex]y[/tex] vary inversely.
Therefore, we can express y in terms of x as:
[tex]y=\frac{k}{x}[/tex]
Where, [tex]k[/tex] is a constant of proportionality.
Now, at [tex]x=10,y=8[/tex]
Plug in 10 for [tex]x[/tex] and 8 for [tex]y[/tex] in the above equation and solve for [tex]k[/tex].
This gives,
[tex]8=\frac{k}{10}\\k=8\times 10=80[/tex]
Therefore, the function that models the inverse variation is :
[tex]y=\frac{k}{x}\\y=\frac{80}{x}[/tex].