w/c one of the ff is the invers of f(x)=2+e^x+1​

A, f(x)^-1=1+e^x B, f(x)^-1=1-ln(x-2)
C, f(x)^-1=1-e^x D,f(x)^-1=1+ln(x-2)

Respuesta :

Inverse function is y = -1 + ln(x-2)

Step-by-step explanation:

   To find the inverse of a function [tex]y=f(x)[/tex], we swap [tex]x \textrm{ and }y[/tex] and solve the equation to get the form [tex]y=f(x)[/tex]. This is the inverse function.

On swapping [tex]x \textrm{ and }y[/tex] in [tex]y=2+e^{(x+1)}[/tex], we get [tex]x=2+e^{(y+1)}[/tex].

[tex]x-2=e^{(y+1)}[/tex]

[tex]ln(x-2)=ln(e^{(y+1)} )=y+1[/tex]

∴ [tex]y=-1+ln(x-2)[/tex] is the inverse function.

[tex]f^{-1}(x)=-1+ln(x-2)[/tex]