Answer:
A. [tex]R'(-2,-2),S'(-1,1),[/tex] and [tex]T'(3,-1)[/tex]
Step-by-step explanation:
Given:
Vertices of triangle RST are [tex]R(-2,2),S(1,1),[/tex] and [tex]T(-1,-3)[/tex].
Rotation is 90° about the center O(0,0). The rotation is counter-clockwise as the angle of rotation is positive.
Now, the co-ordinate rule for 90° rotation counter-clockwise is given as:[tex](x,y)[/tex] → [tex](-y,x)[/tex]
[tex]x[/tex] and [tex]y[/tex] values interchange their places with [tex]y[/tex] becoming negative when interchanged.
So, [tex]R(-2,2)[/tex] → [tex]R'(-2,-2)[/tex]
[tex]S(1,1)[/tex] → [tex]S'(-1,1)[/tex]
[tex]T(-1,-3)[/tex] → [tex]T'(-(-3),-1)[/tex]
⇒[tex]T(-1,-3)[/tex] → [tex]T'(3,-1) [/tex]
Therefore, the image of the vertices are [tex]R'(-2,-2),S'(-1,1),[/tex] and [tex]T'(3,-1)[/tex].