Respuesta :

The correct answer is option A: 5>a>-3

Further explanation:

The absolute is the distance between 0 and the given point.

The absolute rule for inequality is:

|x|<a => then -a<x<a

So

Given

[tex]|-3a+3|<12[/tex]

Removing absolute will result in two inequalities

[tex]-3a+3<12\ \ \ \ \ \ \ AND\ \ \ \  \ \ \ \ \ \ -3a+3>-12\\Solving\ them\ one\ by\ one\\-3a+3<12\\Subtracting\ 3 from\ both\ sides\\-3a+3-3<12-3\\-3a<9\\Dividing\ both\ sides\ by\ 3\\\frac{-3a}{3}<\frac{9}{3}\\-a<3\\Multiplying\ by\ -1\\a>-3\\Next\ inequality\ is\\-3a+3>-12\\Subtracting\ 3\ from\ both\ sides\\-3a+3-3>-12-3\\-3a>-15\\Dividing\ both\ sides\ by\ 3\\\frac{-3a}{3}>\frac{-15}{3}\\-a>-5\\Multiplying\ both\ sides\ by\ -1\\a<5[/tex]

Combining both solutions will give us:

[tex]a<5\\a>-3\\-3<a<5\\OR\\5>a>-3[/tex]

the correct answer is option A: 5>a>-3

Keywords: Absolute inequality, Inequalities

Learn more about inequalities at:

  • brainly.com/question/11286417
  • brainly.com/question/11566221

#LearnwithBrainly