The correct answer is option A: 5>a>-3
Further explanation:
The absolute is the distance between 0 and the given point.
The absolute rule for inequality is:
|x|<a => then -a<x<a
So
Given
[tex]|-3a+3|<12[/tex]
Removing absolute will result in two inequalities
[tex]-3a+3<12\ \ \ \ \ \ \ AND\ \ \ \ \ \ \ \ \ \ -3a+3>-12\\Solving\ them\ one\ by\ one\\-3a+3<12\\Subtracting\ 3 from\ both\ sides\\-3a+3-3<12-3\\-3a<9\\Dividing\ both\ sides\ by\ 3\\\frac{-3a}{3}<\frac{9}{3}\\-a<3\\Multiplying\ by\ -1\\a>-3\\Next\ inequality\ is\\-3a+3>-12\\Subtracting\ 3\ from\ both\ sides\\-3a+3-3>-12-3\\-3a>-15\\Dividing\ both\ sides\ by\ 3\\\frac{-3a}{3}>\frac{-15}{3}\\-a>-5\\Multiplying\ both\ sides\ by\ -1\\a<5[/tex]
Combining both solutions will give us:
[tex]a<5\\a>-3\\-3<a<5\\OR\\5>a>-3[/tex]
the correct answer is option A: 5>a>-3
Keywords: Absolute inequality, Inequalities
Learn more about inequalities at:
#LearnwithBrainly