Respuesta :
Answer with Step-by-step explanation:
Let a rectangle box whose dimensions are u and v.Then, [tex](u/2, v/2)[/tex]
must lie on the ellipse
Given equation of ellipse
[tex]\frac{x^2}{25}+\frac{y^2}{16}=1[/tex]
[tex] (u/2,v/2)[/tex]must lie on the circle therefore,
[tex]\frac{u^2}{100}+\frac{v^2}{64}=1[/tex]
with [tex]u,v\geq 0[/tex]
Suppose , we have to maximize a function [tex]f(u,v)=uv[/tex] subject to constraints g(u,v)=[tex]\frac{u^2}{100}+\frac{v^2}{64}=1[/tex]
[tex]\nabla f=<v,u> \nabla g=<\frac{u}{50},\frac{v}{32} >[/tex]
Using Lagrange multipliers method
[tex]\nabla f=\lambda\nabla g[/tex]
[tex]v=\lambda \frac{u}{50}[/tex]
[tex]u=\lambda\frac{v}{32}[/tex]
[tex]\lambda=\frac{50v}{u}=\frac{32u}{v}[/tex]
[tex]50v^2=32u^2[/tex]
if u=0 then v=0 g(u,v)=[tex]0\neq 1[/tex]
It is absurd condition.
Therefore, we take u and v >0
[tex]v^2=\frac{32u^2}{50}=\frac{16}{25}u^2[/tex]
Substitute the value in ellipse equation then we get
[tex]\frac{u^2}{100}+\frac{u^2}{100}=1[/tex]
[tex]\frac{2u^2}{100}=1[/tex]
[tex]u^2=50[/tex]
[tex]u=5 \sqrt2[/tex]
[tex]v^2=\frac{16}{25}\times 50=32[/tex]
[tex]v=4\sqrt2[/tex]
The critical point is ([tex]5\sqrt2, 4\sqrt2)[/tex].
Therefore, we concluded that the dimensions of the rectangle of greatest area is attained by choosing a box of dimensions [tex]5\sqrt2 \times 4\sqrt2[/tex].