Use the given information to find the number of degrees of​ freedom, the critical values chi Subscript Upper L Superscript 2 and chi Subscript Upper R Superscript 2​, and the confidence interval estimate of sigma. It is reasonable to assume that a simple random sample has been selected from a population with a normal distribution. Nicotine in menthol cigarettes 80​% ​confidence; nequals22​, sequals0.28 mg.

Respuesta :

Answer:

0.16 <\sigma <0.13

Step-by-step explanation:

given

S=0.28

n=22

d_f=n-1 =22-1 =21

[tex]\chi_{L}^{2}=\chi _{0.995}^{2}[/tex]=64.278

[tex]\chi_{U}^{2}=\chi _{0.005}^{2}[/tex]=96.578

now

80% confidence interval for Standard deviation is given by

[tex]\sqrt{\frac{(n-1)S^{2}}{\chi _{U}^{2}}}<\sigma<\sqrt{\frac{(n-1)S^{2}}{\chi _{L}^{2}}}[/tex]

=[tex]\sqrt{\frac{(22-1)(0.28)^{2}}{64.27}}<\sigma<\sqrt{\frac{(22-1)(0.28)^{2}}{96.578}}[/tex]

=0.16 <\sigma <0.13

Answer:  Degree of freedom = [tex]df=21[/tex]

Critical values :

[tex]\chi^2 _{\alpha/2 , df}=29.6151[/tex]

[tex]\chi^2 _{1-\alpha/2 , df}=13.2396[/tex]

Confidence interval : [tex]2358<\sigma<0.3526[/tex]

Step-by-step explanation:

We know that the confidence interval for population standard deviation [tex](\sigma)[/tex] is given by :-

[tex]\sqrt{\dfrac{(n-1)s^2}{\chi^2_{\alpha/2}}}<\sigma<\sqrt{\dfrac{(n-1)s^2}{\chi^2_{1-\alpha/2}}}[/tex]  

, where n = Sample size.

s= sample standard deviation.

[tex]\chi^2_{\alpha/2}[/tex] and [tex]\chi^2_{1-\alpha/2}[/tex] = Critical values.

Given : Confidence level : c= 80%=0.80

Then, significance level = [tex]\alpha=1-0.80=0.20[/tex]

Sample size : n= 22

Degree of freedom = [tex]df=n-1=22-1=21[/tex]

Then, by using Chi-square distribution table ,

[tex]\chi^2 _{\alpha/2 , df}=\chi^2_{{0.10,\ 21}=29.6151[/tex]

[tex]\chi^2 _{1-\alpha/2 , df}=\chi^2_{{0.90,\ 21}=13.2396[/tex]

Sample standard deviation is given to be s= 0.28 mg.

Then , the 80% confidence interval estimate of [tex]\sigma[/tex] will be :-

[tex]\sqrt{\dfrac{(21)(0.28)^2}{29.6151}}<\sigma<\sqrt{\dfrac{(21)(0.28)^2}{13.2396}}\\\\=\sqrt{0.05559326}<\sigma<\sqrt{0.12435421}\\\\=0.23578223<\sigma<0.3526389\\\\\approx0.2358<\sigma<0.3526[/tex]  

Hence, the required confidence interval :  [tex]2358<\sigma<0.3526[/tex]