Answer:
The force on one side of the plate is 3093529.3 N.
Explanation:
Given that,
Side of square plate = 9 m
Angle = 60°
Water weight density = 9800 N/m³
Length of small strip is
[tex]y=\dfrac{\Delta y}{\sin60}[/tex]
[tex]y=\dfrac{2\Delta y}{\sqrt{3}}[/tex]
The area of strip is
[tex]dA=\dfrac{9\times2\Delta y}{\sqrt{3}}[/tex]
We need to calculate the force on one side of the plate
Using formula of pressure
[tex]P=\dfrac{dF}{dA}[/tex]
[tex]dF=P\times dA[/tex]
On integrating
[tex]\int{dF}=\int_{0}^{9\sin60}{\rho g\times y\times 6\sqrt{3}dy}[/tex]
[tex]F=9800\times6\sqrt{3}(\dfrac{y^2}{2})_{0}^{9\sin60}[/tex]
[tex]F=9800\times6\sqrt{3}\times(\dfrac{(9\sin60)^2}{2})[/tex]
[tex]F=3093529.3\ N[/tex]
Hence, The force on one side of the plate is 3093529.3 N.