Respuesta :
Answer:
The angular speed of the system at the instant when the rings reach the ends of the rod is 2.93 rev/min.
Explanation:
Given that,
Mass of rod [tex]m= 3.00\times10^{-2}\ kg[/tex]
Length = 0.350 m
Mass of small ring = 0.240 kg
Distance [tex]d= 5.50\times10^{-2}\ m[/tex]
Angular velocity = 25.0 rev/min
Suppose we calculate the angular speed of the system at the instant when the rings reach the ends of the rod
We need to calculate the moment of inertia of rod
Using formula of moment of inertia
[tex]I_{rod}=\dfrac{1}{12}ML^2[/tex]
Put the value into the formula
[tex]I_{rod}=\dfrac{1}{12}\times3.00\times10^{-2}\times0.350^2[/tex]
[tex]I_{rod}=3.0625\times10^{-4}\ kg-m^2[/tex]
We need to calculate the moment of inertia of the rings when they are at a distance r₁
Using formula of moment of inertia
[tex]I_{ring}=2mr_{1}^2[/tex]
Put the value into the formula
[tex]I_{ring}=2\times0.240\times(5.50\times10^{-2})^2[/tex]
[tex]I_{ring}=14.52\times10^{-4}\ kg-m^2[/tex]
We need to calculate the moment of inertia of the rings when they are at a distance r₂
Using formula of moment of inertia
[tex]I_{ring}=2mr_{2}^2[/tex]
Put the value into the formula
[tex]I_{ring}'=2\times0.240\times(\dfrac{0.350}{2})^2[/tex]
[tex]I_{ring}'=0.0147\ kg-m^2[/tex]
We need to calculate the angular speed of the system at the instant when the rings reach the ends of the rod
Using conservation of angular momentum
[tex](I_{rod}+I_{ring})\omega_{0}=(I_{rod}+I_{ring}')\omega[/tex]
Put the value into the formula
[tex]\omega=\dfrac{(I_{rod}+I_{ring})\omega_{0}}{(I_{rod}+I_{ring}')}[/tex]
[tex]\omega=\dfrac{3.0625\times10^{-4}+14.52\times10^{-4}}{3.0625\times10^{-4}+0.0147}\times25.0[/tex]
[tex]\omega=2.93\ rev/min[/tex]
Hence, The angular speed of the system at the instant when the rings reach the ends of the rod is 2.93 rev/min.