On a certain hot​ summer's day, 677 people used the public swimming pool. The daily prices are $ 1.50 for children and $ 2.00 for adults. The receipts for admission totaled $ 1188.00 .  How many children and how many adults swam at the public pool that​ day?

Respuesta :

Answer:

The number of Adult swam = 345

The number of children swam = 332

Step-by-step explanation:

Given in question as ,

Total number of people = 677

Total amount for admission = $ 1188.00

The daily price for children = $1.50

The daily price for adult      = $2.00

Let the number of Adult = A

The number of children = C

Now ,

The number of Adult +  The number of children = 677

Or,                         A  +   C                                       = 677

And                       2 A + 1.50 C                               = 1180

Solve both the equation , 2 A + 2 C = 1354

                                           2 A + 1.50 C  = 1188

Or , (2 A + 2 C)  - (2 A + 1.50 C ) = 3154 - 1188

Or,   0.5 C                                    = 166

Or,       C = [tex]\frac{166}{0.5}[/tex] = 332

Total number of Children swam = 332

Again put this value in above eq,

So ,   A  + 332 = 677

Or,    A = 677 - 332 = 345

Total number of Adult swam = 345

Hence , Total number of Children swam = 332

And        Total number of Adult swam = 345