Answer:
Part a)
[tex]L = 25.81 m[/tex]
Part b)
[tex]a = 27.14 m/s^2[/tex]
Explanation:
Let the length of the string is L
so here if the displacement from initial length is "x" then we have
[tex]L + x = 65 - 10[/tex]
[tex]x = 55 - L[/tex]
now by energy conservation we have
[tex]\frac{1}{2}kx^2 = mgh[/tex]
[tex]\frac{1}{2}k(55 - L)^2 = mg(55)[/tex]
now we also know that for 5 m length of the chord
[tex]mg = kx[/tex]
[tex]k = \frac{mg}{1.5}[/tex]
so for L length of the chord we have
[tex]k = \frac{mg}{1.5} \times \frac{5}{L}[/tex]
now from above equation
[tex]\frac{1}{2}\times \frac{5mg}{1.5 L} (55 - L)^2 = 55 mg[/tex]
[tex]5(55 - L)^2 = 55\times 2\times 1.5L[/tex]
so by solving above we have
[tex]L = 25.81 m[/tex]
Part b)
Now when string is stretched by maximum amount then the acceleration will be maximum
so it is given as
[tex]F_s - mg = ma[/tex]
[tex]k(55 - L) - mg = ma[/tex]
[tex]\frac{5mg}{1.5L} (55 - L) - mg = ma[/tex]
[tex]a = \frac{5g}{1.5(25.81)}(55 - 25.81) - g[/tex]
[tex]a = 27.14 m/s^2[/tex]