Respuesta :
Answer:
- a) 3/5·((-2)^n + 4·3^n)
- b) 3·2^n - 5^n
- c) 3·2^n + 4^n
- d) 4 - 3 n
- e) 2 + 3·(-1)^n
- f) (-3)^n·(3 - 2n)
- g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19
Step-by-step explanation:
These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.
If there is a solution of the form [tex]a[n]=r^n[/tex], then it will satisfy ...
[tex]r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}[/tex]
Rearranging and dividing by [tex]r^{n-2}[/tex], we get the quadratic ...
[tex]r^2-c_1r-c_2=0[/tex]
The quadratic formula tells us values of r that satisfy this are ...
[tex]r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}[/tex]
We can call these values of r by the names r₁ and r₂.
Then, for some coefficients p and q, the solution to the recurrence relation is ...
[tex]a[n]=pr_1^n+qr_2^n[/tex]
We can find p and q by solving the initial condition equations:
[tex]\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right][/tex]
These have the solution ...
[tex]p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}[/tex]
_____
Using these formulas on the first recurrence relation, we get ...
a)
[tex]c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n[/tex]
__
The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)
_____
For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...
[tex]a[n]=(p+qn)r^n[/tex]
The initial condition equations are now ...
[tex]\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right][/tex]
and the solutions for p and q are ...
[tex]p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}[/tex]
__
Using these formulas on problem (d), we get ...
d)
[tex]c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n[/tex]
__
And for problem (f), we get ...
f)
[tex]c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n[/tex]
_____
Comment on problem g
Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.