Solve these recurrence relations together with the initial conditions given. a) an= an−1+6an−2 for n ≥ 2, a0= 3, a1= 6 b) an= 7an−1−10an−2for n ≥ 2, a0= 2, a1= 1 c) an= 6an−1−8an−2for n ≥ 2, a0= 4, a1= 10 d) an= 2an−1−an−2for n ≥ 2, a0= 4, a1= 1 e) an= an−2for n ≥ 2, a0= 5, a1= -1 f) an=− 6an−1−9an−2for n ≥ 2, a0= 3, a1= -3 g) an+2 = -4an+15anfor n ≥ 0, a0= 2, a1= 8

Respuesta :

Answer:

  • a) 3/5·((-2)^n + 4·3^n)
  • b) 3·2^n - 5^n
  • c) 3·2^n + 4^n
  • d) 4 - 3 n
  • e) 2 + 3·(-1)^n
  • f) (-3)^n·(3 - 2n)
  • g) ((-2 - √19)^n·(-6 + √19) + (-2 + √19)^n·(6 + √19))/√19

Step-by-step explanation:

These homogeneous recurrence relations of degree 2 have one of two solutions. Problems a, b, c, e, g have one solution; problems d and f have a slightly different solution. The solution method is similar, up to a point.

If there is a solution of the form [tex]a[n]=r^n[/tex], then it will satisfy ...

  [tex]r^n=c_1\cdot r^{n-1}+c_2\cdot r^{n-2}[/tex]

Rearranging and dividing by [tex]r^{n-2}[/tex], we get the quadratic ...

  [tex]r^2-c_1r-c_2=0[/tex]

The quadratic formula tells us values of r that satisfy this are ...

  [tex]r=\dfrac{c_1\pm\sqrt{c_1^2+4c_2}}{2}[/tex]

We can call these values of r by the names r₁ and r₂.

Then, for some coefficients p and q, the solution to the recurrence relation is ...

  [tex]a[n]=pr_1^n+qr_2^n[/tex]

We can find p and q by solving the initial condition equations:

[tex]\left[\begin{array}{cc}1&1\\r_1&r_2\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right][/tex]

These have the solution ...

[tex]p=\dfrac{a[0]r_2-a[1]}{r_2-r_1}\\\\q=\dfrac{a[1]-a[0]r_1}{r_2-r_1}[/tex]

_____

Using these formulas on the first recurrence relation, we get ...

a)

[tex]c_1=1,\ c_2=6,\ a[0]=3,\ a[1]=6\\\\r_1=\dfrac{1+\sqrt{1^2+4\cdot 6}}{2}=3,\ r_2=\dfrac{1-\sqrt{1^2+4\cdot 6}}{2}=-2\\\\p=\dfrac{3(-2)-6}{-5}=\dfrac{12}{5},\ q=\dfrac{6-3(3)}{-5}=\dfrac{3}{5}\\\\a[n]=\dfrac{3}{5}(-2)^n+\dfrac{12}{5}3^n[/tex]

__

The rest of (b), (c), (e), (g) are solved in exactly the same way. A spreadsheet or graphing calculator can ease the process of finding the roots and coefficients for the given recurrence constants. (It's a matter of plugging in the numbers and doing the arithmetic.)

_____

For problems (d) and (f), the quadratic has one root with multiplicity 2. So, the formulas for p and q don't work and we must do something different. The generic solution in this case is ...

  [tex]a[n]=(p+qn)r^n[/tex]

The initial condition equations are now ...

[tex]\left[\begin{array}{cc}1&0\\r&r\end{array}\right] \left[\begin{array}{c}p\\q\end{array}\right] =\left[\begin{array}{c}a[0]\\a[1]\end{array}\right][/tex]

and the solutions for p and q are ...

[tex]p=a[0]\\\\q=\dfrac{a[1]-a[0]r}{r}[/tex]

__

Using these formulas on problem (d), we get ...

d)

[tex]c_1=2,\ c_2=-1,\ a[0]=4,\ a[1]=1\\\\r=\dfrac{2+\sqrt{2^2+4(-1)}}{2}=1\\\\p=4,\ q=\dfrac{1-4(1)}{1}=-3\\\\a[n]=4-3n[/tex]

__

And for problem (f), we get ...

f)

[tex]c_1=-6,\ c_2=-9,\ a[0]=3,\ a[1]=-3\\\\r=\dfrac{-6+\sqrt{6^2+4(-9)}}{2}=-3\\\\p=3,\ q=\dfrac{-3-3(-3)}{-3}=-2\\\\a[n]=(3-2n)(-3)^n[/tex]

_____

Comment on problem g

Yes, the bases of the exponential terms are conjugate irrational numbers. When the terms are evaluated, they do resolve to rational numbers.

ACCESS MORE