Let's start by getting the expressions for the speed that allow us to get the equations correctly,
[tex]A_1V_1 = A_2V_2[/tex]
[tex](\frac{\pi}{4}*d^2_1)(V1) = (\frac{\pi}{4}*d^2_2)(V_2)[/tex]
Then,
[tex]\frac{V_1}{V_2}= \frac{d^2_2}{d^2_1}[/tex]
Replacing then
[tex]\frac{V_1}{V_2} = (\frac{0.5^2}{3.0^2})[/tex]
[tex]\frac{V_1}{1/36} = V_2[/tex]
[tex]V_2 = 36.0V_1[/tex]
We then proceed to obtain the speed, from the previously given relationship,
So,
[tex]p_1+\frac{\rho V^2_1}{2} = p_2 + \frac{\rho V^2_2}{2}[/tex]
Where [tex]p_i[/tex] is the pressure in each section,
As section 2 is open, then [tex]p_2=0psfg[/tex] and[tex]\rho = 1.94slugs/ft^3[/tex]
[tex]2,500+\frac{1.94(V_1)^2}{2} = 0 + \frac{1.94(36V_1)^2}{2}[/tex]
[tex]2,500+1.94*0.5V^2_1 = 1.94*(648)V^2_1[/tex]
[tex]2,500 = 1.94*(647.5)V^2_1[/tex]
[tex]V_1 = \sqrt{\frac{2,500}{1.94*647.5}}[/tex]
[tex]V_1 = 1.4101ft/s[/tex]
a) The velocity at section 2 would be,
[tex]V_2 = 36V_1[/tex]
[tex]V_2 = 36*(1.4101)[/tex]
[tex]V_2 = 50.78ft/s[/tex]
b) The discharge Q would be,
[tex]Q= 1.4101*(\frac{\pi}{4}*(0.5)^2)[/tex]
[tex]Q= 0.2768 ft^3/s[/tex]
The force then is,
[tex]F+P_1A_1-P_2A_2 = \rho Q (V_2-V_1)[/tex]
[tex]F - 2,500*(\frac{\pi}{4}(0.5)^2)= 1.94*0.2768*(50.78-1.4101)[/tex]
Solving,
[tex]F= 517.39kip[/tex]