Let H and K be subgroups of a group G, and let g be an element of G. The set [tex]\math HgK = \{x \in G \mid x = hgk \text {for some} h \in H, k \in K\}[/tex] is called a double coset. Do the double cosets partition G?

Respuesta :

Answer:

Yes, double cosets partition G.

Step-by-step explanation:

We are going to define a relation over the elements of G.

Let [tex]x,y\in G[/tex]. We say that [tex]x\sim y[/tex] if, and only if, [tex] y\in HxK[/tex], or, equivalently, if [tex] y=hxk [/tex], for some [tex] h\in H, k\in K[/tex].

This defines an equivalence relation over G, that is, this relation is reflexive, symmetric and transitive:

  • Reflexivity: ([tex]x\sim x[/tex] for all [tex]x\in G[/tex].) Note that we can write [tex]x=exe[/tex], where [tex]e[/tex] is the identity element, so [tex]e\in H,K[/tex] and then [tex]x\in HxK[/tex]. Therefore, [tex]x\sim x[/tex].
  • Symmetry: (If [tex]x\sim y[/tex] then [tex]y\sim x[/tex].) If [tex]x\sim y[/tex] then [tex]y=hxk[/tex] for some [tex]h\in H[/tex] and [tex]k\in K[/tex]. Multiplying by the inverses of h and k we get that [tex]x=h^{-1}yk^{-1}[/tex] and is known that [tex]h^{-1}\in H[/tex] and [tex]k^{-1}\in K[/tex]. This means that [tex]x\in HyK [/tex] or, equivalently, [tex]y\sim x[/tex].
  • Transitivity: (If [tex]x\sim y[/tex] and [tex]y\sim z[/tex], then [tex]x\sim z[/tex].) If [tex]x\sim y[/tex] and [tex]y\sim z[/tex], then there exists [tex]h_1,h_2\in H[/tex] and [tex]k_1,k_2\in K[/tex] such that [tex]y=h_1xk_1[/tex] and [tex]z=h_2yk_2[/tex]. Then, [tex]\\ z=h_2yk_2=h_2(h_1xk_1)k_2=(h_2h_1)x(k_1k_2)=h_3xk_3[/tex] where [tex]h_3=h_2h_1\in H[/tex] and [tex]k_3=k_1k_2\in K[/tex]. Consequently, [tex]z\sim x[/tex].

Now that we prove that the relation "[tex]\sim [/tex]" is an equivalence over G, we use the fact that the different equivalence classes partition G. Since the equivalence classes are defined by [tex][x]=\{y\in G\colon x\sim y\} =\{y\in G \colon y=hgk\ \text{for some } h\in H, k\in K \}=HxK[/tex], then we're done.

ACCESS MORE
EDU ACCESS
Universidad de Mexico