Answer:
[tex]U=1.02\times 10^{-7}\ J[/tex]
Explanation:
Given that
h= 50 mm = 0.05 m
R= 24 mm = 0.024 m
Rw= 2.1 mm = 0.0021 m
I= 2.9 A
We know that magnetic filed given as
[tex]B=\dfrac{\mu _oI}{2\pi r}[/tex]
Volume of small element
dV= 2πr hdr
Now the magnetic potential energy given as
[tex]U=\int \dfrac{B^2}{2\mu_o}dV[/tex]
[tex]B=\dfrac{\mu _oI}{2\pi r}[/tex]
dV= 2πr hdr
[tex]U=\int\dfrac{\left(\dfrac{\mu _oI}{2\pi r}\right)^2}{2\mu_o}2\pi rhdr[/tex]
[tex]U=\dfrac{\mu _oI^2h}{4\pi}\int_{R_w}^{R}\dfrac{dr}{r}[/tex]
[tex]U=\dfrac{\mu _oI^2h}{4\pi}\times \ln\dfrac{R}{R_w}[/tex]
Now by putting the values
[tex]U=\dfrac{4\pi \times 10^{-7}\times 2.9^2\times 0.05}{4\pi}\times \ln\dfrac{0.024}{0.0021}\ J[/tex]
[tex]U=1.02\times 10^{-7}\ J[/tex]