Calculate the amount of energy in kilojoules needed to change 459 g of water ice at −10 ∘C to steam at 125 ∘C. The following constants may be useful: Cm (ice)=36.57 J/(mol⋅∘C) Cm (water)=75.40 J/(mol⋅∘C) Cm (steam)=36.04 J/(mol⋅∘C) ΔHfus=+6.01 kJ/mol ΔHvap=+40.67 kJ/mol Express your answer with the appropriate units. View Available Hint(s)

Respuesta :

Answer: [tex]1.41\times 10^3kJ[/tex]

Explanation:-

The conversions involved in this process are :

[tex](1):H_2O(s)(-10^0C)\rightarrow H_2O(s)(0^0C)\\\\(2):H_2O(s)(0^0C)\rightarrow H_2O(l)(0^0C)\\\\(3):H_2O(l)(0^0C)\rightarrow H_2O(l)(100^0C)\\\\(4):H_2O(l)(100^0C)\rightarrow H_2O(g)(100^0C)\\\\(5):H_2O(g)(100^0C)\rightarrow H_2O(g)(125^0C)[/tex]

Now we have to calculate the enthalpy change:

[tex]\Delta H=[n\times c_{ice}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[n\times c_{water}\times (T_{final}-T_{initial})]+n\times \Delta H_{vap}+[n\times c_{steam}\times (T_{final}-T_{initial})][/tex]

where,

[tex]\Delta H[/tex] = enthalpy change = ?

m = mass of water = 459 g

[tex]c_{s}[/tex] = specific heat of ice = [tex]36.57J/mol^0C[/tex]

[tex]c_{l}[/tex] = specific heat of water =  [tex]75.40J/mol^0C[/tex]

[tex]c_{g}[/tex] = specific heat of steam = [tex]36.04J/gmol^0C[/tex]

n = number of moles of water = [tex]\frac{\text{Mass of water}}{\text{Molar mass of water}}=\frac{459g}{18g/mole}=25.5mole[/tex]

[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole

[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = 40.67 KJ/mole = 40670 J/mole

Now put all the given values in the above expression, we get:

[tex]\Delta H=[25.5mole\times 36.57J/mol^0C\times (0-(-10))^0C]+25.5mole\times 6010J/mole+[25.5mole\times 75.40J/mol^0C\times (100-0)^0C]+25.5mole\times 40670J/mole+[25.5mole\times 36.04J/gmol^0C\times (125-100)^0c][/tex]

[tex]\Delta H=1414910.85J=1.41\times 10^3kJ[/tex]    

(1kJ = 1000 J)

Therefore, the enthalpy change is [tex]1.41\times 10^3kJ[/tex]

ACCESS MORE
EDU ACCESS
Universidad de Mexico