Answer: [tex]1.41\times 10^3kJ[/tex]
Explanation:-
The conversions involved in this process are :
[tex](1):H_2O(s)(-10^0C)\rightarrow H_2O(s)(0^0C)\\\\(2):H_2O(s)(0^0C)\rightarrow H_2O(l)(0^0C)\\\\(3):H_2O(l)(0^0C)\rightarrow H_2O(l)(100^0C)\\\\(4):H_2O(l)(100^0C)\rightarrow H_2O(g)(100^0C)\\\\(5):H_2O(g)(100^0C)\rightarrow H_2O(g)(125^0C)[/tex]
Now we have to calculate the enthalpy change:
[tex]\Delta H=[n\times c_{ice}\times (T_{final}-T_{initial})]+n\times \Delta H_{fusion}+[n\times c_{water}\times (T_{final}-T_{initial})]+n\times \Delta H_{vap}+[n\times c_{steam}\times (T_{final}-T_{initial})][/tex]
where,
[tex]\Delta H[/tex] = enthalpy change = ?
m = mass of water = 459 g
[tex]c_{s}[/tex] = specific heat of ice = [tex]36.57J/mol^0C[/tex]
[tex]c_{l}[/tex] = specific heat of water = [tex]75.40J/mol^0C[/tex]
[tex]c_{g}[/tex] = specific heat of steam = [tex]36.04J/gmol^0C[/tex]
n = number of moles of water = [tex]\frac{\text{Mass of water}}{\text{Molar mass of water}}=\frac{459g}{18g/mole}=25.5mole[/tex]
[tex]\Delta H_{fusion}[/tex] = enthalpy change for fusion = 6.01 KJ/mole = 6010 J/mole
[tex]\Delta H_{vap}[/tex] = enthalpy change for vaporization = 40.67 KJ/mole = 40670 J/mole
Now put all the given values in the above expression, we get:
[tex]\Delta H=[25.5mole\times 36.57J/mol^0C\times (0-(-10))^0C]+25.5mole\times 6010J/mole+[25.5mole\times 75.40J/mol^0C\times (100-0)^0C]+25.5mole\times 40670J/mole+[25.5mole\times 36.04J/gmol^0C\times (125-100)^0c][/tex]
[tex]\Delta H=1414910.85J=1.41\times 10^3kJ[/tex]
(1kJ = 1000 J)
Therefore, the enthalpy change is [tex]1.41\times 10^3kJ[/tex]