Respuesta :
Answer : The final temperature will be [tex]66.7^oC[/tex]
Explanation :
In this problem we assumed that heat given by the hot body is equal to the heat taken by the cold body.
[tex]q_1=-q_2[/tex]
[tex]m_1\times c_1\times (T_f-T_1)=-m_2\times c_2\times (T_f-T_2)[/tex]
where,
[tex]c_1[/tex] = specific heat of ice = [tex]2.09J/g^oC[/tex]
[tex]c_2[/tex] = specific heat of water = [tex]4.18J/g^oC[/tex]
[tex]m_1[/tex] = mass of ice = 15.0 g
[tex]m_2[/tex] = mass of water = 150 g
[tex]T_f[/tex] = final temperature = ?
[tex]T_1[/tex] = initial temperature of ice = [tex]0.0^oC[/tex]
[tex]T_2[/tex] = initial temperature of water = [tex]70.0^oC[/tex]
Now put all the given values in the above formula, we get
[tex]15.0g\times 2.09J/g^oC\times (T_f-0.0)^oC=-150g\times 4.18J/g^oC\times (T_f-70.0)^oC[/tex]
[tex]T_f=66.7^oC[/tex]
Therefore, the final temperature will be [tex]66.7^oC[/tex]
This question involves the concepts of the law of conservation of energy, thermal equilibrium, and specific heat.
The final temperature reached is "58.33 °C".
According to the law of conservation of energy, in this situation:
Heat Released by Liquid Water = Heat Gained by Ice Cubes
Using, the formulae of specific heat to find out the final temperature at thermal equilibrium:
[tex]m_iC_i\Delta T_i=m_wC_w\Delta T_w\\[/tex]
where,
[tex]m_i[/tex] = mass of ice = 15 g
[tex]m_w[/tex] = mass of liquid water = 150 g
[tex]C_i[/tex] = specific heat of solid ice = 2.093 J/g°C
[tex]C_w[/tex] = specific heat of liquid water = 4.18 J/g°C
[tex]\Delta T_i[/tex] = chage in temperature of ice = T - 0°C
[tex]\Delta T_w[/tex] = chage in temperature of water = 70°C - T
T = Final Temperature = ?
Therefore,
[tex](15\ g)(4.18\ J/g^oC)(T-0\ ^oC)=(150\ g)(2.09\ J/g^oC)(70^oC-T)\\62.7\ T + 313.5\ T=21945\\\\T = \frac{21945\ J}{376.2\ J/^oC}[/tex]
T = 58.33 °C
Learn more about thermal equilibrium here:
https://brainly.com/question/14556352?referrer=searchResults
The attached picture shows thermal equilibrium.

Otras preguntas
