Answer:
a) [tex]\Delta U_g=-5.3kJ[/tex]
b) [tex]K=0.27kJ[/tex]
c) [tex]F_f=0.45kN[/tex]
Explanation:
the gravitational potential energy is given by:
[tex]U_g=m.g.h\\[/tex]
[tex]\Delta U_g=m.g.h_f-m.g.h_i\\\Delta U_g=49kg*9.8m/s^2*(0m-11m)\\\Delta U_g=-5.3kJ[/tex]
The kinetic energy is given by:
[tex]K=\frac{1}{2}m.v^2\\[/tex]
the initial kinetic energy is zero because the motion started from rest, so:
[tex]K=\frac{1}{2}*49kg*(3.3m/s^2)^2\\K=0.27kJ[/tex]
applying the conservation of energy theorem:
[tex]U_g-W_f=K_f\\W_f=-(\Delta K+\Delta U)\\W_F=5.3kJ-0.27kJ\\W_F=-5.0kJ[/tex]
The work done by the friction force is given by:
[tex]W_f=F_f.h.cos(\theta)\\[/tex]
the angle of the force is 180 degrees because it's against the movement:
[tex]F_f=\frac{W_f}{h.cos(\theta)}\\\\F_f=\frac{-5.0kJ}{11m.cos(180^o)}\\\\F_f=0.45kN[/tex]