Respuesta :
The factorization of the expression of 43x³ + 216y³ is
(7x + 6y)(49x² - 42xy + 36y²)
Step-by-step explanation:
The sum of two cubes has two factors:
1. The first factor is [tex]\sqrt[3]{1st}[/tex] + [tex]\sqrt[3]{2nd}[/tex]
2. The second factor is ( [tex]\sqrt[3]{1st}[/tex] )² - ( [tex]\sqrt[3]{1st}[/tex] ) ( [tex]\sqrt[3]{2nd}[/tex] ) + ( [tex]\sqrt[3]{2nd}[/tex] )²
Ex: The expression a³ + b³ is the sum of 2 cubes
The factorization of a³ + b³ is (a + b)(a² - ab + b²)
∵ The expression is 343x³ + 216y³
∵ [tex]\sqrt[3]{343x^{3}}[/tex] = 7x
∵ [tex]\sqrt[3]{216y^{3}}[/tex] = 6y
∴ The first factor is (7x + 6y)
∵ (7x)² = 49x²
∵ (7x)(6y) = 42xy
∵ (6y)² = 36y²
∴ The second factor is (49x² - 42xy + 36y²)
∴ The factorization of 43x³ + 216y³ is (7x + 6y)(49x² - 42xy + 36y²)
The factorization of the expression of 43x³ + 216y³ is
(7x + 6y)(49x² - 42xy + 36y²)
Learn more:
You can learn more about factors in brainly.com/question/10771256
#LearnwithBrainly