Respuesta :
Answer:2.2 rad/s
Explanation:
Given
Length of stick=1.5 m
mass m=300 gm
mass of bullet [tex]m_0=3 gm[/tex]
approach velocity of bullet=250 m/s
Final Velocity of Velocity=140 m/s
Distance of Pivot to bullet hit is [tex]r=\frac{L}{4}=0.375 m[/tex]
Conserving Angular Momentum
Initial momentum [tex]L_i=mv_i\cdot r[/tex]
[tex]L_i=3\times 10^{-3}\times 250\times 0.375=0.281 kg.m^2/s[/tex]
[tex]L_f=mv_f\cdot r[/tex]
[tex]L_f=3\times 10^{-3}\times 140\times 0.375=0.157 kg.m^2/s[/tex]
Moment of inertia of rod about Pivot[tex]=\frac{mL^2}{12}=0.05625 kg.m^2[/tex]
[tex]L_{net}=I\times \omega _{stick}[/tex]
[tex]0.281-0.157=0.05625\times \omega _{stick}[/tex]
[tex]\omega _{stick}=\frac{0.124}{0.05625}=2.2 rad/s[/tex]
Answer
given,
length of stick = 1.5 m
mass of the stick = 300 g = 0.3 kg
mass of bullet, m = 3 g = 0.003 kg
initial velocity (v_1) = 250 m/s
final velocity (v_2) = 150 m/s
distance of the pivot point from center
[tex]r = \dfrac{H}{4}[/tex]
[tex]r = \dfrac{1.5}{4}[/tex]
r = 0.375 m
angular momentum of stick after collision
[tex]L_{stick} = L_i - L_f[/tex]
= [tex]mv_ir - mv_fr[/tex]
= [tex]mr(v_i-v_f)[/tex]
= 0.003\times 0.375 \times (250-140)[/tex]
= 0.12375 kg.m²/s
momentum of inertia
[tex]I = \dfrac{1}{12}MH^2[/tex]
[tex]I = \dfrac{1}{12}\times 0.3 \times 1.5^2[/tex]
angular speed of stick
[tex]\omega_{stick}= \dfrac{L_{stick}}{I}[/tex]
= [tex]\dfrac{0.12375}{0.05625}[/tex]
= 2.2 rad/s