A uniform stick 1.5 m long with a total mass of 300 g is pivoted at its center. A 3.0-g bullet is shot through the stick midway between the pivot and one end The bullet approaches at 250 m/s and leaves at 140 m/s.
With what angular speed is the stick spinning after the collision?
ω= rad/s

Respuesta :

Answer:2.2 rad/s

Explanation:

Given

Length of stick=1.5 m

mass m=300 gm

mass of bullet [tex]m_0=3 gm[/tex]

approach velocity of bullet=250 m/s

Final Velocity of Velocity=140 m/s

Distance of Pivot to bullet hit is [tex]r=\frac{L}{4}=0.375 m[/tex]

Conserving Angular Momentum

Initial momentum [tex]L_i=mv_i\cdot r[/tex]

[tex]L_i=3\times 10^{-3}\times 250\times 0.375=0.281 kg.m^2/s[/tex]

[tex]L_f=mv_f\cdot r[/tex]

[tex]L_f=3\times 10^{-3}\times 140\times 0.375=0.157 kg.m^2/s[/tex]

Moment of inertia of rod about Pivot[tex]=\frac{mL^2}{12}=0.05625 kg.m^2[/tex]

[tex]L_{net}=I\times \omega _{stick}[/tex]

[tex]0.281-0.157=0.05625\times \omega _{stick}[/tex]

[tex]\omega _{stick}=\frac{0.124}{0.05625}=2.2 rad/s[/tex]

Answer

given,

length of stick = 1.5 m

mass of the stick = 300 g = 0.3 kg

mass of bullet, m = 3 g = 0.003 kg

initial velocity (v_1) = 250 m/s

final velocity (v_2) = 150 m/s

distance of the pivot point from center

    [tex]r = \dfrac{H}{4}[/tex]

    [tex]r = \dfrac{1.5}{4}[/tex]

           r = 0.375 m

angular momentum of stick after collision

[tex]L_{stick} = L_i - L_f[/tex]

              = [tex]mv_ir - mv_fr[/tex]

              = [tex]mr(v_i-v_f)[/tex]

              = 0.003\times 0.375 \times (250-140)[/tex]

              = 0.12375 kg.m²/s

momentum of inertia

[tex]I = \dfrac{1}{12}MH^2[/tex]

[tex]I = \dfrac{1}{12}\times 0.3 \times 1.5^2[/tex]

angular speed of stick

[tex]\omega_{stick}= \dfrac{L_{stick}}{I}[/tex]

                        = [tex]\dfrac{0.12375}{0.05625}[/tex]

                        = 2.2 rad/s

ACCESS MORE
EDU ACCESS
Universidad de Mexico