Respuesta :
Answer:
The final temperature of the water is 32 °C
Explanation:
Step 1: Given data
The silver cube has an edge length of 2.33 cm
The gold cube has an edge length of 2.71 cm
Both are heated to 81.9 °C and then placed in 106.5 mL water at 19.9 °C
Silver has a specific heat of 0.238 J/g*K and a density of 19.3 g/mL
Gold has a specific heat of 0.1256 J/g*K and a density of 10.49 g/mL
Water has a specific heat of 4.184 J/g*K and a density of 1 g/mL
Step 2: Calculate the volume of silver, gold
V(Ag) = 2.33³ = 12.6493 cm³
V(Au) = 2.71 ³ = 19.9025 cm³
Step 3: Calculate the mass of silver, gold and water
m(Ag) = 12.6493 cm³ * 10.49 g/cm³ = 132.69 grams
m(Au) = 19.9025 cm³ * 19.3 g/cm³ = 384.118 grams
m(w) = 106.5 mL * 1 g/mL = 106.5 grams
Step 4: Calculate the final temperature of water
q(Ag) + q(Au) = - q(w)
m(Ag)*ΔT * C(Ag) + m(Au) *ΔT * C(Au) = - m(w) * ΔT * C(w)
m(Ag)*(T2-T1,Ag)*C(Ag) + m(Au)*(T2-T1,Au)*C(Au) = - m(w)*(T2-T1,w)*C(w)
m(Ag)*T2*C(Ag) - m(Ag)*T1,Ag *C(Ag) + m(Au)*T2*C(Au) - m(Au)*T1,Au*C(Au) = - m(w) * T2* C(w) + m(w)*T1(w)*C(w)
m(Ag)*T2*C(Ag) + m(Au)*T2*C(Au) + m(w)*T2*C(w) = m(Ag)*T1,Ag *C(Ag) + m(Au)*T1,Au*C(Au) + m(w) * T1,w* C(w)
T2(m(Ag)*C(Ag) + M(Au) * C(Au) + m(w) * C(w)) = m(Ag)*T1,Ag * C(Ag) + m(Au) *T1,Au * C(Au) + m(w)*T1,w * C(w)
T2 = [ m(Ag)*T1,Ag*C(Ag) + m(Au) * T1,Au*C(Au) + m(H20) * T1,(w)*C(w) ]/ [m(Ag)*C(Ag) + m(Au)*C(Au)+ m(w)*C(w)]
T2= [132.69 * (81.9) * (0.1256) + 384.11 * (81.9) * (0.238) + 106.5 * (19.9) * (4.184)] / [132.69*(0.1256) +384.11 *( 0.238) + 106.5*(4.184)]
T2 = 32 °C
The final temperature of the water is 32 °C
At the equilibrium point, the heat lost by the silver and gold cubes is equal
to the eat gained by the water.
The final temperature of the water is approximately 29.33°C.
Reasons:
The given parameters are;
Edge length of silver cube = 2.33 cm
Edge length of gold cube = 2.71 cm
Volume of water = 106.5 mL = 106.5 cm³
Water temperature = 19.9°C
[tex]\begin{tabular}{|l|c|c|}\underline{Substance}&\underline{Specific \ heat \ (J/(g \cdot ^{\circ}C)}&\underline{Density \ (g/cm^3)}\\Gold&0.1256&19.3\\Silver&0.2386&10.5\\Water&4.184&1.00\end{array}\right][/tex]
Required:
The final temperature of the water
Solution:
Mass of the silver = 2.33³ × 10.5 ≈ 132.82
Mass of the silver, m[tex]_s[/tex] ≈ 132.82 g
Mass of the gold = 2.71³ × 19.3 ≈ 384.12
Mass of the gold, [tex]m_g[/tex] ≈ 384.12 g
Mass of the water = 106.5 cm³ × 1.00 g/cm³ = 106.5 g
Let T₂ represent the final equilibrium temperature. The heat released by
the metals absorbed by the water, therefore;
m[tex]_s[/tex] × [tex]c_s[/tex] × (T[tex]_s[/tex] - T₂) + [tex]m_g[/tex] × [tex]c_g[/tex] × (T[tex]_g[/tex] - T₂)
Where;
[tex]c_s[/tex] = The specific heat capacity of silver
[tex]c_g[/tex] = The specific heat capacity of gold
0.2386 × 132.82×(81.9 - T₂) + 0.1256× 384.12×(81.9 - T₂) = 4.184×106.5×(T₂ - 19.9)
6546.7849356 - 79.936324·T = 445.596·T - 8867.3604
[tex]T_2 = \dfrac{15414.1453356}{525.532324} \approx 29.33[/tex]
The final temperature of the water, T₂ ≈ 29.33°C
Learn more here
https://brainly.com/question/15672002