Respuesta :
Answer:
a)0.067
b)0.111
c)0.612
d)$687.28
Step-by-step explanation:
We are given the following information in the question:
Mean, μ = $385
Standard Deviation, σ = $110
We are given that the distribution of domestic airfares is a bell shaped distribution that is a normal distribution.
Formula:
[tex]z_{score} = \displaystyle\frac{x-\mu}{\sigma}[/tex]
a) P(domestic airfare is $550 or more)
P(x > 550)
[tex]P( x > 550) = P( z > \displaystyle\frac{550 - 385}{110}) = P(z > 1.5)[/tex]
[tex]= 1 - P(z \leq 1.5)[/tex]
Calculation the value from standard normal z table, we have,
[tex]P(x > 550) = 1 - 0.933 = 0.067= 6.7\%[/tex]
b) P(domestic airfare is $250 or less)
[tex]P(x \leq 250) = P(z \leq \displaystyle\frac{250-385}{110}) = P(z \leq -1.22)[/tex]
Calculating the value from the standard normal table we have,
[tex]P( x \leq 250) = 0.111 = 11.1\%[/tex]
c))P(domestic airfare is between $300 and $500)
[tex]P(300 \leq x \leq 500) = P(\displaystyle\frac{300 - 385}{110} \leq z \leq \displaystyle\frac{500-385}{110}) = P(-0.77 \leq z \leq 1.04)\\\\= P(z \leq 1.04) - P(z < -0.77)\\= 0.851 - 0.239 = 0.612 = 61.2\%[/tex]
[tex]P(300 \leq x \leq 500) = 61.2\%[/tex]
d) P(X=x) = 0.03
We have to find the value of x such that the probability is 0.03.
P(X > x)
[tex]P( X > x) = P( z > \displaystyle\frac{x - 385}{110})=0.03[/tex]
[tex]= 1 -P( z \leq \displaystyle\frac{x - 385}{110})=0.03 [/tex]
[tex]=P( z \leq \displaystyle\frac{x - 385}{110})=0.997 [/tex]
Calculation the value from standard normal z table, we have,
[tex]\displaystyle\frac{x - 385}{110} = 2.748\\x = 687.28[/tex]
Hence, the domestic fares must be $687.28 or greater for them to lie in the highest 3%.