Answer:
[tex]Q_{cv}=-339.347kJ[/tex]
Explanation:
First we calculate the mass of the aire inside the rigid tank in the initial and end moments.
[tex]P_iV_i=m_iRT_i[/tex] (i could be 1 for initial and 2 for the end)
State1
[tex]1bar*|\frac{100kPa}{1}|*2=m_1*0.287*295[/tex]
[tex]m_1=232kg[/tex]
State2
[tex]8bar*|\frac{100kPa}{1bar}|*2=m_2*0.287*350[/tex]
[tex]m_2=11.946[/tex]
So, the total mass of the aire entered is
[tex]m_v=m_2-m_1\\m_v=11.946-2.362\\m_v=9.584kg[/tex]
At this point we need to obtain the properties through the tables, so
For Specific Internal energy,
[tex]u_1=210.49kJ/kg[/tex]
For Specific enthalpy
[tex]h_1=295.17kJ/kg[/tex]
For the second state the Specific internal Energy (6bar, 350K)
[tex]u_2=250.02kJ/kg[/tex]
At the end we make a Energy balance, so
[tex]U_{cv}(t)-U_{cv}(t)=Q_{cv}-W{cv}+\sum_i m_ih_i - \sum_e m_eh_e[/tex]
No work done there is here, so clearing the equation for Q
[tex]Q_{cv} = m_2u_2-m_1u_1-h_1(m_v)[/tex]
[tex]Q_{cv} = (11.946*250.02)-(2.362*210.49)-(295.17*9.584)[/tex]
[tex]Q_{cv}=-339.347kJ[/tex]
The sign indicates that the tank transferred heat to the surroundings.