Respuesta :
Answer:
F = 0.179 N
Explanation:
given,
length of the rod = 0.759 m
mass of the rod = 1.03 kg
force = ?
initial angular speed = 0 rad/s
final angular speed = 6.87 rad/s
time interval = 9.95 s
the angular acceleration
[tex]\alpha = \dfrac{\omega_f-\omega_i}{\Delta t}[/tex]
[tex]\alpha = \dfrac{6.87 -0}{9.95}[/tex]
[tex]\alpha =0.690\ rad/s^2[/tex]
moment inertial of the rod
[tex]I =\dfrac{mL^2}{3}[/tex]
torque produced by the rod τ = I α
torque is also equal to τ = F L
now,
F L = I α
[tex]F L=(\dfrac{mL^2}{3})\times \alpha[/tex]
[tex]F= (\dfrac{1.03\times 0.759}{3})\times 0.690[/tex]
F = 0.179 N
Answer:
Force will be 0.179 N
Explanation:
We have given length of the rod l = 0.759 m
Mass m = 1.03 kg
We have to find the constant force
Initial angular velocity [tex]\omega _i=0rad/sec[/tex]
And final angular velocity [tex]\omega _f=6.87rad/sec[/tex]
Time t = 9.95 sec
So angular acceleration [tex]\alpha =\frac{\omega _f-\omega _i}{t}=\frac{6.87-0}{9.95}=0.69rad/sec^2[/tex]
Moment of inertia of rod [tex]I=\frac{ml^2}{3}=\frac{1.03\times 0.759^2}{3}=0.1977kgm^2[/tex]
So torque [tex]\tau =I\alpha =0.1977\times 0.69=0.1364N-m[/tex]
We know that torque [tex]\tau =Fl[/tex]
So [tex]0.1364=F\times 0.759[/tex]
F = 0.179 N