A uniform, solid sphere of radius 4.00 cm and mass 3.75 kg starts with a purely translational speed of 3.75 m/s at the top of an inclined plane. The surface of the incline is 2.75 m long, and is tilted at an angle of 30.0∘ with respect to the horizontal. Assuming the sphere rolls without slipping down the incline, calculate the sphere's final translational speed v2 at the bottom of the ramp.

Respuesta :

Answer:

The velocity or speed V2 at the bottom of the ramp is

[tex]vf=5.129 \frac{m}{s}[/tex]

Explanation:

Calculated the velocity of the sphere at the bottom of the ramp using the law of conservation of energy

[tex]E_{p}= E_{k}[/tex]

[tex]\frac{1}{2}*m*vf^2+\frac{1}{2}I*w^2=\frac{1}{2}*m*vi^2+m*g*h[/tex]

But Inertia can be use in value using in the initial equation so:

[tex]I=\frac{2}{5}*m*r^{2} \\ w=\frac{v}{r}[/tex]

[tex]\frac{1}{2}*m*vf^2+\frac{1}{5}*m*vf^2=\frac{1}{2}*m*vi^2+m*g*h[/tex]

[tex]\frac{7}{10}*m*vf^2=\frac{1}{2}*m*vi^2+m*g*h[/tex]

So replacing also can get factor m from all terms an eliminated 'm'

[tex]vf^{2}=(\frac{5}{7})vi^2+(\frac{10}{7})*g*h \\vf=\sqrt{(\frac{5}{7})vi^2+(\frac{10}{7})*g*h}[/tex]

To find 'h'

[tex]h=L*sin(\alpha) \\h=2.75*sin(25)=1.162m\\h=1.162 m[/tex]

[tex]vf=\sqrt{\frac{5}{7}*(3.75\frac{m}{s})^{2}+\frac{10}{7}*9.8\frac{m}{s^{2}}*1.1622m}\\ vf=5.129 \frac{m}{s}[/tex]

Lanuel

The sphere's final translational speed [tex]V_2[/tex] at the bottom of the ramp is equal to 5.41 m/s.

Given the following data:

  • Radius of sphere = 4.00 cm
  • Mass of sphere = 3.75 kg
  • Speed = 3.75 m/s
  • Length = 2.75 m
  • Angle of inclination = 30.0°

To calculate the sphere's final translational speed [tex]V_2[/tex] at the bottom of the ramp, we would apply the law of conservation of energy and :

Total kinetic energy at the top + Work done by gravity = Total kinetic energy at the bottom.

Note: Total kinetic energy at the bottom = Final translational K.E + Rotational K.E

[tex]K.E_{top} + W_{g} = K.E_{trans} + R.E\\\\\frac{1}{2} mv^2_1 + mgdsin\theta = \frac{1}{2} mv^2_2 + \frac{1}{2} I \omega^2[/tex]   ....equation 1.

For a sphere:

[tex]I = \frac{2}{5} mr^2[/tex]   ...equation 2.

For angular speed:

[tex]\omega = \frac{v}{r}[/tex]    ....equation 3.

Substituting the value I and [tex]\omega[/tex] into eqn. 1, we have:

[tex]\frac{1}{2} mv^2_1 + mgdsin\theta = \frac{1}{2} mv^2_2 + \frac{1}{2} (\frac{2}{5} mr^2) (\frac{v_2}{r} )^2\\\\\frac{1}{2} mv^2_1 + mgdsin\theta = \frac{1}{2} mv^2_2 + \frac{1}{5} ( mv_2^2)\\\\\frac{1}{2} mv^2_1 + mgdsin\theta = \frac{7}{10} mv^2_2[/tex]

Multiplying both sides by [tex]\frac{10}{7m}[/tex], we have:

[tex]\frac{5}{7} V_1^2+\frac{10}{7} gdsin\theta = V_2^2\\\\V_2=\sqrt{\frac{5}{7} V_1^2+\frac{10}{7} gdsin\theta}[/tex]

Substituting the given parameters into the formula, we have;

[tex]V_2=\sqrt{\frac{5}{7} \times(3.75)^2+\frac{10}{7}\times (9.8 \times 2.75 sin(30))} \\\\V_2=\sqrt{10.05+19.25} \\\\V_2=\sqrt{29.3} \\\\V_2 = 5.41\;m/s[/tex]

Read more: https://brainly.com/question/22599382

ACCESS MORE