Respuesta :
Answer:
t=27725.8minutes
Explanation:
To determinate use the law the change of volume in determinate time is derivate so:
[tex]\frac{dV}{dt}=flowin-flowout[/tex]
The flow in is zero and the flow out is modeling with V as the volume out in the volume of the lake in the reason of change.
[tex]\frac{dV}{dt}=0-(\frac{V}{10x10^{8}})*5000\\\frac{dV}{dt}=-5x10^{-5}*V \\dV*V=-5x10^{-5}*dt[/tex]
Integrate to get the volume function
[tex]\int\limits{\frac{1}{V}}\, dv=\int\limits{-5x10^{-5} }\, dt\\ ln(V)=-5x10^{-5}*t\\ln*e(V)=C*e^{-5x10^{-5}*t}\\[/tex]
The find the constant C in the time t=0 the volume is knowing so:
[tex]t=0s\\V=400\\V=C*e^{0}\\C=400[/tex]
[tex]V=400*e^{-5x10^{-5}*t}[/tex]
The volume is 1 part per million so:
[tex]\frac{V}{10x^{8}}=\frac{1}{10x^{6}}\\ V=100[/tex]
[tex]V=400*e^{-5x10^{-5}*t}\\100=400*e^{-5x10^{-5}*t}\\\frac{100}{400}=e^{-5x10^{-5}*t}\\ln*\frac{1}{4}=ln*e^{-5x10^{-5}*t}\\-ln(4)=-5x10^{-5}*t\\ t=\frac{-ln(4)}{-5x10^{-5}}=27725.88\\t=27725.8minutes[/tex]
The rate of change of volume of pesticide in the lake relative to the
volume of water in the lake pesticide gives change in concentration.
Response:
- The time it will take fir the volume of pesticide in the lake to reduce to a safe level of 1 parts per million is 27,725.9 minutes
Which method can be used to determine the time the water in the lake will be safe?
Given:
Volume of water in the lake + The pesticide = 10⁸ gallons
Volume of water that flows into the lake = 5,000 gallons
Volume of water and pesticide that flows into the dam = 5,000 gallons
Concentration of pesticide that flows into the dam is therefore;
[tex]C = \mathbf{\dfrac{V}{10^8} \times 5,000}[/tex]
Rate at which the volume of pesticide, V changes in the lake is therefore;
[tex]\dfrac{dV}{dt} = \mathbf{0 - \dfrac{V}{10^8} \times 5,000}[/tex]
Which gives;
[tex]\dfrac{dV}{V} = \mathbf{-\dfrac{V}{10^8} \times 5,000 \times dt}[/tex]
- [tex]\displaystyle \int\limits {\dfrac{dV}{V} = \mathbf{\int\limits -\dfrac{1}{10^8} \times 5,000 \, dt}}[/tex]
Which gives;
㏑V = -5 × 10⁻⁵·t + c
[tex]V = e^{-5 \times 10^{-5} \cdot t + c} = \mathbf{C \cdot e^{-5 \times 10^{-5} \cdot t}}[/tex]
[tex]V = C \cdot e^{-5 \times 10^{-5} \cdot t}[/tex]
From the given constraints, we have;
At t = 0, V = 400, which gives;
[tex]400 = \mathbf{C \cdot e^{-5 \times 10^{-5} \times 0}}= C[/tex]
C = 400
When the volume is 1 part per million, we have;
[tex]\dfrac{1}{1,000,000} = \mathbf{ \dfrac{V}{10^8}x^{2} }[/tex]
Which gives;
[tex]V = \dfrac{1}{1,000,000} \times 10^8= \mathbf{100}[/tex]
When the volume is 1 part per million, V = 100
Therefore;
[tex]100 = \mathbf{400 \times e^{-5 \times 10^{-5} \cdot t}}[/tex]
[tex]e^{-5 \times 10^{-5} \cdot t} = \dfrac{100}{400} = \dfrac{1}{4}[/tex]
[tex]{-5 \times 10^{-5} \cdot t} = \mathbf{ln \left(\dfrac{1}{4} \right)}[/tex]
- [tex]The \ time \ in \ minutes \ to \ reach \ safe \ levels, \, t = \dfrac{ ln \left(\dfrac{1}{4} \right)}{-5 \times 10^5 } \approx \underline{27,725.9 \ minutes}[/tex]
Learn more about rate of change of a function here:
https://brainly.com/question/10507415