Answer:
[tex]T_f=7.6619^\circ C[/tex]
Explanation:
Given:
We, know
Heat required for warming of ice upto 0°C from -10°C
[tex]Q_i=m_i\times c_i\times \Delta T[/tex]
[tex]Q_i=1.4\times 2108\times 10[/tex]
[tex]Q_i=29512 J[/tex]
Heat released during the cooling of tea upto 0°C from 80°C
[tex]Q_t=m_t\times c_t\times \Delta T[/tex]
[tex]Q_t=1.8\times 4184\times 80[/tex]
[tex]Q_t= 602496 J[/tex]
∵[tex]Q_t >Q_i[/tex]
∴The heat from the quantity that remains after bringing the ice to 0°C will be used for melting the ice.
Heat remaining afterthis process:
[tex]Q_0=(Q_t -Q_i)[/tex]= 572984 J
Amount of heat energy required by the total mass of ice to melt at 0°C:
[tex]Q_L=m_i.L_i[/tex]
[tex]Q_L=1.4\times 336000[/tex]
[tex]Q_L=470400 J[/tex]
Now, the remaining of the heat will be used to raise the temperature of the tea (water) from 0°C to a higher temperature.
Heat remaining after melting the total ice into water at 0°C which will increases the temperature of water:
[tex]Q_w= Q_0-Q_L[/tex]
[tex]Q_w=572984-470400[/tex]
[tex]Q_w=102584 J[/tex]
Now, the final temperature of the tea(water)rising from 0°C:
∵whole ice(along with tea) is now water with initial temperature [tex]T_i[/tex]= 0°C
[tex]Q_w=(m_i+m_t)\times c_t\times(T_f-T_i)[/tex]
where:
[tex]T_f[/tex]= final temperature
[tex]102584=(1.8+1.4)\times 4184\times (T_f-0)[/tex]
[tex]T_f= \frac{102584}{3.2\times 4184}[/tex]
[tex]T_f=7.6619^\circ C[/tex]