Respuesta :
Answer:
1. [tex]3.4^{o}[/tex]
2. 163.3 m
Explanation:
Static friction between road and rubber, μs =0.06
The maximum speed of the car, v = 50 km/h
= (50)(1000/3600) m/s
= 13.89 m/s
The acceleration due to gravity, [tex]g = 9.81 m/s^{2}[/tex]
The frictional force, f = μsN ...... (1)
The component mg cosθ which balance the normal reaction N
The component mg sinθ acts in an opposite direction to the frictional force f.
ΣF = mg sinθ-f = 0 ...... (2)
Substitute the equation (1) in equation (2), we get
ΣF = mgsinθ-μsN = 0
mgsinθ-μsmgcosθ =0
μs = sinθ/cosθ
tanθ = μs
θ = tan-1( μs) = tan-1(0.06) = [tex]3.4^{o}[/tex]
(b)The vertical component of the force is
N cosθ = fsinθ+mg
N cosθ = μsNsinθ+mg
N[cosθ- μs sinθ] = mg ...... (3)
The horizontal component of the force along the motion of the car is
Nsinθ+fcosθ = ma (Centripetal acceleration, [tex]a = \frac {v^{2}}{r}[/tex]
Nsinθ+fcosθ = [tex]m(\frac {v^{2}}{r})[/tex]
Nsinθ+μsNcosθ = [tex]m(\frac {v^{2}}{r})[/tex]
N[sinθ+μs cosθ] = [tex]m(\frac {v^{2}}{r})[/tex] ...... (4)
Dividing the equation (4) with equation (3),
[sinθ+μscosθ]/[cosθ- μs sinθ] = [tex]\frac {v^{2}}{rg}[/tex]
cosθ[sinθ/cosθ+μs]/cosθ[1- μs sinθ/cosθ] =[tex]\frac {v^{2}}{rg}[/tex]
[tanθ+μs]/[1-μs tanθ] = [tex]\frac {v^{2}}{rg}[/tex]
From part (1), tanθ = μs
Then the above equation becomes
[tex]\frac {(\mu_s+\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}[/tex]
[tex]\frac {(2\mu_s]}{[1-\mu_s^{2}]} =\frac {v^{2}}{rg}[/tex]
Therefore, the minimum radius of the curvature of the curve is
[tex]r = \frac {v^{2}}{{2 \mu_s/[1-\mu_s^{2}]}g}[/tex]
= [tex]\frac {v^{2}[1-\mu_s^{2}]}{2\mu_s g}[/tex]
= [tex]\frac {(13.89 m/s)^{2}[1-(0.06)^{2}]}{(2)(0.06)(9.81)}[/tex]
= 163.3 m
The must not slide if the bank angle is not beyond θ = 3.4336°
The minimum radius of curvature of the curve, r = 327.734 m
Design of curved sections
Curved sections are part of the road ways that are not straight. while doing the design factors considered inclde
- Centrpetal force
- Frictional force
- Banking
given:
coefficient of static frication μ = 0.06
speed, v = 50 km/h
v = 50 * 1000 / 60 * 60 = 13.889 m/s
for the first condition, to prevent slide
centrepetal force, [tex]\frac{mv^{2} }{r}[/tex] < frictional force. μ (mg)
(m v^2) / r > μ (mg)
v^2 / r g > μ
but tan θ = v^2 / r g
therefore
tan θ > μ
θ < tan inverse of μ
θ < Arc tan 0.06
θ < 3.4336°
Radius of curvature
v^2 / r g = μ
r = v^2 / μ g
r = 13..889^2 / ( 0.06 * 9.81 )
r = 327.734 m
Read more on Centrepetal force here:
https://brainly.com/question/898360
Read more on Frictional force here:
https://brainly.com/question/13680415
Read more on Banking angle here:
https://brainly.com/question/18955243