Answer:
Maximum spring compression is 0.21 m
Solution:
As per the question:
Mass of the block, M = 0.4 kg
Spring constant, k = 300 N/m
Height of the block, h = 1.5 m
Velocity of the block, v = 2 m/s
Now,
By conservation of energy:
[tex]PE + KE = E_{spring}[/tex] (1)
where
PE = Potential energy = Mgh
KE = Kinetic Energy = [tex]\frac{1}{2}Mv^{2}[/tex]
[tex]E_{spring} = \frac{1}{2}kx^{2}[/tex] = energy in the spring
Now, using eqn (1) to calculate maximum compression 'x' of the spring:
[tex]Mgh + \frac{1}{2}Mv^{2} = \frac{1}{2}kx^{2}[/tex]
[tex]0.4\times 9.8\times 1.5 + \frac{1}{2}\times 0.4\times (2)^{2} = \frac{1}{2}\times 300x^{2}[/tex]
[tex]x^{2} = 0.0445[/tex]
x = 0.21 m