Respuesta :

Answer:

[tex]\frac{\sqrt{2}}{2}[/tex]

Step-by-step explanation:

This almost looks like the left hand side of the following identity:

[tex]\sin(A)\cos(B)-\sin(B)\cos(A)=\sin(A-B)[/tex] .

Here are similar identities in the same category as the above:

[tex]\sin(A)\cos(B)+\sin(B)\cos(A)=\sin(A+B)[/tex]

[tex]\cos(A)\cos(B)-\sin(A)\sin(B)=\cos(A+B)[/tex]

[tex]\cos(A)\cos(B)+\sin(A)\sin(B)=\cos(A-B)[/tex]

Things to notice: 90-76=14. and 90-59=31.

This means we will possibly want to use the following co-function identities:

[tex]\cos(90-A)=\sin(A)[/tex]

[tex]\sin(90-A)=\cos(A)[/tex]

So let's begin:

[tex]\sin(76)\cos(31)-\sin(14)\cos(59)[/tex]

Applying the co-function identities:

[tex]\cos(14)\cos(31)-\sin(14)\sin(31)[/tex]

Applying one of the difference identities above with cosine:

[tex]\cos(31+14)[/tex]

[tex]\cos(45)[/tex]

45 is a special angle so [tex]\cos(45)[/tex] is something you find off most unit circles in any trigonometry class.

[tex]\cos(45)=\frac{\sqrt{2}}{2}[/tex]

RELAXING NOICE
Relax