Answer:
2.59 Kg, 3.25 Kg
Explanation:
Acceleration can be found using equation
[tex]s=0.5at^{2}[/tex] where s is the release distance, a is acceleration and t is time
Making a the subject of the formula
[tex]a=\frac {2S}{t^{2}}[/tex]
Substituting 0.28 for s and time for 1 second
[tex]a=\frac {2*0.28m}{(1s)^{2}=0.56 m/s^{2}[/tex]
Acceleration formula for the Atwood machine is given by
[tex]a=\frac {g(m1-m2)}{m1+m2}[/tex] where m1 and m2 are first and second masses respectively
Two situations are possible
When m1>m2
Assuming m1 is 3.7kg which is heavier than m2
Substituting a for [tex]0.56 m/s^{2}[/tex] and m1 as 2.9Kg and taking acceleration due to gravity as [tex]9.81 m/s^{2}[/tex]
[tex]0.56 m/s^{2}=\frac {9.81 m/s^{2}*(2.9Kg-m2)}{2.9Kg+m2}[/tex]
[tex](0.56 m/s^{2})*(2.9Kg+m2)=9.81(2.9Kg-m2)[/tex]
[tex](0.56 m/s^{2}+9.81)*m2=(9.81*2.9)-(2.9*0.56)[/tex]
10.37m2=28.449-1.624
10.37m2=26.825
[tex]m2=\frac {26.825}{10.37}=2.5867888138[/tex]
m2=2.59 Kg
When m1<m2
[tex]a=\frac {g(m2-m1)}{m1+m2}[/tex]
Then m1=2.9Kg hence
[tex]0.56 m/s^{2}=\frac {9.81(m2-2.9Kg)}{2.9Kg+m2}[/tex]
[tex](0.56 m/s^{2})*(2.9Kg+m2)=9.81 m/s^{2}*(m2-2.9Kg)[/tex]
[tex](0.56 m/s^{2}-9.81 m/s^{2})*m2=(-2.9 Kg*9.81 m/s^{2})-(2.9 Kg*0.56 m/s^{2})[/tex]
-9.25m2=-28.449-1.624=-30.073
9.25m2=30.073
[tex]m2=\frac {30.073}{9.25}=3.2511351351[/tex]
m2=3.25 Kg