Answer:
Remainder is 12.
The binomial [tex](x-2)[/tex] is not a factor of the given polynomial.
Step-by-step explanation:
The Remainder Theorem states that when a polynomial [tex]p(x)[/tex] is divided by a binomial [tex](x-a)[/tex], then the remainder is given as [tex]p(a)[/tex].
Also, if [tex]p(a)[/tex] is 0, then [tex](x-a)[/tex] is a factor of the given polynomial.
Here, [tex]p(x)=x^{3}-x+6[/tex] and [tex]a=2[/tex]
So, the remainder on dividing [tex]p(x)=x^{3}-x+6[/tex] by [tex](x-2)[/tex] is [tex]p(2)[/tex].
Now, [tex]p(2)=2^{3}-2+6=8-2+6=12[/tex].
Therefore, the remainder is 12.
∵ [tex]p(2)[/tex] is equal to 12 and not 0. So, the binomial [tex](x-2)[/tex] is not a factor of the given polynomial.