Respuesta :
Answer: (a)[tex]I=0.0227 A[/tex]
(b) [tex]J=46.9422 A.m^{-2}[/tex]
(c) [tex]v_d= 0.0042 m.s^{-1}[/tex]
(d) [tex]E= 202.8571 V.m^{-1}[/tex]
Explanation:
Given is a solid cube having following properties:
- cross-sectional area, a = [tex]4.84 cm^2[/tex]
- length of the cube perpendicular to the given area, [tex]l= 14 cm[/tex]
- resistance, [tex]R=1250 \Omega[/tex]
- potential difference across the length, V = 28.4 V
- electron density, [tex]N= 6.9\times 10^{22} m^{-3}[/tex]
We, know the formula:
- Current, [tex]I=\frac{V}{R}[/tex]
Putting the respective values:
[tex]I= \frac{28.4}{1250} \\\\I=0.0227 A[/tex]
- Current density, [tex]J= \frac{I}{a}[/tex]
Putting the respective values:
[tex]J=\frac{0.0227}{4.84\times 10^{-4}}\\\\J=46.9422 A.m^{-2}[/tex]
- Drift velocity, [tex]v_d= \frac{I}{N.e.a}[/tex]
where, e is the charge on an electron.
Putting the respective values:
[tex]v_d= \frac{0.0227}{6.9\times 10^{22}\times 1.6\times 10^{-19}\times 4.84\times 10^{-4}}[/tex]
[tex]v_d= 0.0042 m.s^{-1}[/tex]
Electric field, [tex]E= \frac{V}{l}[/tex]
[tex]\Rightarrow E=\frac{28.4}{14\times 10^{-2}} \\\\\Rightarrow E= 202.8571 V.m^{-1}[/tex]
Answer:
(a) I = 0.023 A
(b) J = [tex]46.9\ A/m^{2}[/tex]
(c) [tex]v_{d} = 2.88\times 10^{- 7}\ m/s[/tex]
(d) E = 202.85 N/C
Solution:
As per the question:
Cross-sectional area, A = [tex]4.84\ cm^{2} = 4.84\times 10^{- 4}\ m^{2}[/tex]
Length of the block, L = 14.0 cm = 0.14 m
R = 1250[tex]\Omega[/tex]
Potential Difference, V = [tex]28.4\ V[/tex]
N = [tex]6.90\times 10^{22}\ conduction\ electrons/m^{3}[/tex]
Now,
(a) Current in the block is given by:
[tex]I = \frac{V}{R}[/tex]
[tex]I = \frac{28.4}{1250} = 0.023\ A[/tex]
(b) Current density is given by:
[tex]J = \frac{I}{A} = \frac{V}{AR} = \frac{28.4}{4.84\times 10^{- 4}\times 1250} = 46.9\ A/m^{2}[/tex]
(c) Drift velocity is given by:
[tex]v_{d} = \frac{J}{ne} = \frac{ALJ}{Ne} = \frac{VAL}{NeRA} = \frac{VL}{NeR}[/tex]
where
n = [tex]\frac{1}{AL}[/tex]
[tex]v_{d} = \frac{28.4\times 0.14}{6.90\times 10^{22}\times 1.6\times 10^{- 19}\times 1250} = 2.88\times 10^{- 7}\ m/s[/tex]
(d) The magnitude of electric field is given by:
[tex]E = \frac{V}{L} = \frac{28.4}{0.14} = 202.85\ N/C[/tex]
Otras preguntas
