Respuesta :
Answer:
a)
[tex]6.2[/tex] m
b)
[tex] 8.6[/tex] ms⁻¹
Explanation:
[tex]m[/tex] = mass of the wood block = 2 kg
[tex]v_{i}[/tex] = initial speed of the block at the bottom = 13 m/s
[tex]\theta[/tex] = angle of incline = 27°
[tex]\mu _{k}[/tex] = Coefficient of kinetic friction = 0.2
[tex]f _{k}[/tex] = kinetic frictional force
[tex]h[/tex] = height of the incline gained
[tex]L[/tex] = length of the incline traveled
In triangle ABC
[tex]Sin\theta =\frac{BC}{AB} =\frac{h}{L}[/tex]
[tex]L = \frac{h}{Sin \theta}[/tex]
[tex]N[/tex] = Normal force on the block by incline surface
From the force diagram of the block, force equation perpendicular to the incline surface is given as
[tex]N = mg Cos\theta[/tex] Eq-1
kinetic frictional force on the block is given as
[tex]f_{k} = \mu _{k}N[/tex]
Using Eq-1
[tex]f_{k} = \mu _{k} mg Cos\theta[/tex]
Work done by kinetic frictional force is given as
[tex]W = f_{k} L[/tex]
Using conservation of energy
Kinetic energy at the bottom = work done by frictional force + potential energy at the top
[tex](0.5) m {v_{i}}^{2} = W + mgh[/tex]
[tex](0.5) m {v_{i}}^{2} = f_{k} L + mgh[/tex]
[tex](0.5) m {v_{i}}^{2} = \mu _{k} mg Cos\theta (\frac{h}{Sin \theta}) + mgh[/tex]
inserting the values
[tex](0.5) (2) (13)^{2} = (0.2) (2)(9.8) Cos27 (\frac{h}{Sin 27}) + (2)(9.8)h[/tex]
[tex]h = 6.2[/tex] m
b)
[tex]v_{f}[/tex] = final speed of the block after returning to starting point
Using conservation of energy
Kinetic energy at the bottom initially = work done by frictional force + Kinetic energy at the bottom finally
[tex](0.5) m {v_{i}}^{2} = W + (0.5) m {v_{f}}^{2} [/tex]
[tex](0.5) m {v_{i}}^{2} = f_{k} (2L) + (0.5) m {v_{f}}^{2}[/tex]
[tex](0.5) m {v_{i}}^{2} = \mu _{k} mg Cos\theta (\frac{2h}{Sin \theta}) + (0.5) m {v_{f}}^{2}[/tex]
inserting the values
[tex](0.5) (2) (13)^{2} = (0.2) (2)(9.8) Cos27 (\frac{2 (6.2))}{Sin 27}) + (0.5) (2) {v_{f}}^{2}[/tex]
[tex]v_{f} = 8.6[/tex] ms⁻¹
