Answer:
v=545.41 [tex]\frac{m}{s}[/tex]
β=-25.93
Explanation:
Give the acceleration in 'x' and 'y' also the time can find the initial velocity using equation of uniform acceleration motion
For axis x
[tex]a_{x}=5.10\frac{m}{s^{2}} \\v_{fx}=3780\frac{m}{s} \\v_{fx}=v_{ox}+a_{x}*t\\v_{ox}=v_{fx}-a_{x}*t\\v_{ox}=3780 \frac{m}{s}-5.1\frac{m}{s^{2} }*645s\\v_{ox}=490.5\frac{m}{s}[/tex]
For axis y
[tex]a_{y}=7.30\frac{m}{s^{2}} \\v_{fy}=4470\frac{m}{s} \\v_{fy}=v_{oy}+a_{y}*t\\v_{oy}=v_{fy}-a_{y}*t\\v_{oy}=4470\frac{m}{s}-7.30\frac{m}{s^{2} }*645s\\v_{oy}=-238.5\frac{m}{s}[/tex]
Maginuted
[tex]v=\sqrt{v_{xo}^{2} +v_{yo}^{2} } \\v=\sqrt{490.5x^{2} +(-238.5)^{2} }\\v=545.41 \frac{m}{s}[/tex]
The direction is knowing when find the angle so
[tex]\beta =tan^{-1}*\frac{v_{yo} }{v_{xo}}\\\beta =tan^{-1}*\frac{-238.5}{490.5}\\\beta =tan^{-1}*-0.48\\\beta =-25.93[/tex]