Respuesta :
Answer:
[tex]2.1\times 10^{-12} c[/tex]
Explanation:
We are given that
Surface area of membrane=[tex]5.3\times 10^{-9} m^2[/tex]
Thickness of membrane=[tex]1.1\times 10^{-8} m[/tex]
Assume that membrane behave like a parallel plate capacitor.
Dielectric constant=5.9
Potential difference between surfaces=85.9 mV
We have to find the charge resides on the outer surface of membrane.
Capacitance between parallel plate capacitor is given by
[tex]C=\frac{k\epsilon_0 A}{d}[/tex]
Substitute the values then we get
Capacitance between parallel plate capacitor=[tex]\frac{5.9\times 8.85\times 10^{-12}\times 5.3\times 10^{-9}}{1.1\times 10^{-8}}[/tex]
[tex]C=0.25\times 10^{-12}F[/tex]
V=[tex]85.9 mV=85.9\times 10^{-3}[/tex]
[tex]Q=CV[/tex]
[tex]Q=0.25\times 10^{-12}\times 85.9\times 10^{3}=2.1\times 10^{-12} c[/tex]
Hence, the charge resides on the outer surface=[tex]2.1\times 10^{-12} c[/tex]
Answer:
The charge on the outer surface is [tex]2.15\times 10^{- 12}\ C[/tex]
Solution:
As per the question:
Surface Area, A = [tex]5.3\times 10^{- 9}\ m^{2}[/tex]
Thickness, t = [tex]1.1\times 10^{- 8}\ m[/tex]
Dielectric constant, K = 5.9
Potential on the on the membrane's outer surface, V = 85.9 mV = 0.0859 V
Now,
(a) To calculate the charge on the surface, Q:
We know that the capacitance of a parallel plate capacitor can be given as:
[tex]C = \frac{k epsilon_{o}A}{d}[/tex]
[tex]C = \frac{5.9\times 8.85\times 10^{- 12}\times 5.3\times 10^{- 9}}{1.1\times 10^{- 8}} = 2.5\times 10^{- 11}\ F[/tex]
[tex]Q = CV = 2.5\times 10^{- 11}\times 0.0859 = 2.15\times 10^{- 12}\ C[/tex]