Respuesta :
Answer:
Part a)
[tex]\theta = 8.05 degree[/tex]
Part b)
[tex]a = 1.37 m/s^2[/tex]
Explanation:
As the uniform sphere is rolling down the inclined plane then the net force on the sphere is given as
[tex]mg sin\theta - F_f = ma[/tex]
also we have torque equation on it
[tex]F_f R = I\alpha[/tex]
for pure rolling
[tex]a = R \alpha[/tex]
[tex]F_f = \frac{Ia}{R^2}[/tex]
now we have
[tex]mg sin\theta = ma + \frac{Ia}{R^2}[/tex]
now we have
[tex]mg sin\theta = (m + \frac{2}{5}m)a[/tex]
[tex]a = \frac{5}{7}g sin\theta[/tex]
now given that
[tex]a = 0.10 g[/tex]
so we have
[tex]0.10 g = \frac{5}{7} g sin\theta[/tex]
[tex]sin\theta = 0.14[/tex]
[tex]\theta = 8.05 degree[/tex]
Part b)
If the inclined plane is frictionless then the acceleration is given as
[tex]a = g sin\theta[/tex]
[tex]a = 9.8(0.14)[/tex]
[tex]a = 1.37 m/s^2[/tex]
Answer:
Explanation:
Given
Moment of inertia of sphere is [tex]I=\frac{2Mr^2}{5}[/tex]
Here Friction will Provide torque
thus [tex]f_r\times r=I\times \alpha [/tex]
[tex]f_r=\frac{I}{r^2}[/tex]
Also friction will oppose weight sin component
[tex]mg\sin \theta -f_r=ma[/tex]
[tex]a=\frac{g\sin \theta }{1+\frac{I}{mr^2}}[/tex]
[tex]a=0.1 g=\frac{g\sin \theta }{1+\frac{I}{mr^2}}[/tex]
[tex]\sin \theta =0.14[/tex]
[tex]\theta =8.407^{\circ}[/tex]
(b)Considering [tex]\mu [/tex] the coefficient of friction
acceleration of block sliding down the incline
[tex]a=g\sin \theta -\mu g\cos \theta [/tex]