Answer:
The speed of the block when is fallen 30cm
v=0.726[tex]\frac{m}{s}[/tex]
Explanation:
∑F= (m2)g - ƒ - (m1)g*sin(θ) = (m1)a
g = 9.81 m/s²
ƒ = μN = μ(m1)g
[tex](m2)*g - u*(m1)*g - (m1)*g*sin(\alpha ) = (m1)*a[/tex]
(0.200)(9.81) - (0.1)(0.290)(9.81) - (0.290)(9.81)sin(30°) = (0.290)a
[tex](0.200kg)(9.81\frac{m}{s^{2}}) - (0.1)(0.290kg)(9.81\frac{m}{s^{2}}) - (0.290kg)(9.81\frac{m}{s^{2}})sin(30°) = (0.290kg)*a[/tex]
[tex]0.511101=0.29*a\\a=0.879\frac{m}{s^{2} }[/tex]
[tex]v_{f}^{2}=v_{o}^{2}+2*a(x_{f}^{2}-v_{o}^{2})\\v_{o}=0\\v_{o}=0\\v_{f}^{2}=2*a(x_{f})\\v_{f}=\sqrt{2*a(x_{f})}\\v_{f}=\sqrt{2*0.879\frac{m}{s^{2}}*0.30m} \\v_{f}=0.726 \frac{m}{s}[/tex]