Respuesta :
Answer:
[tex]E_{ionization}=5.45\times 10^{-19}\ J[/tex]
Explanation:
[tex]E_n=-2.18\times 10^{-18}\times \frac{1}{n^2}\ Joules[/tex]
For transitions:
[tex]Energy\ Difference,\ \Delta E= E_f-E_i =-2.18\times 10^{-18}(\frac{1}{n_f^2}-\frac{1}{n_i^2})\ J=2.18\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]
[tex]\Delta E=2.18\times 10^{-18}(\frac{1}{n_i^2} - \dfrac{1}{n_f^2})\ J[/tex]
So, [tex]n_i=2[/tex] and [tex]n_f=\infty [/tex] (As the hydrogen has to ionize)
Thus,
[tex]\Delta E=2.18\times 10^{-18}(\frac{1}{2^2} - \dfrac{1}{{\infty}^2})\ J[/tex]
[tex]\Delta E=2.18\times 10^{-18}(\frac{1}{2^2})\ J[/tex]
[tex]E_{ionization}=5.45\times 10^{-19}\ J[/tex]
The ionization energy required to ionize a hydrogen atom from n = 2 energy level is 5.45 × 10⁻¹⁹
The energy required for the ionization of an atom is the amount of energy needed to remove an electron from an atom from its excited state to a ground state.
The ionization energy can be expressed by using the formula:
[tex]\mathbf{E= 2.18 \times 10^{-18} \Big (\dfrac{1}{n_1^2} - \dfrac{1}{\infty^2} \Big)}[/tex]
where;
n = 2
[tex]\mathbf{E= 2.18 \times 10^{-18} \Big (\dfrac{1}{2^2} - \dfrac{1}{\infty^2} \Big)}[/tex]
[tex]\mathbf{E=\dfrac{ 2.18 \times 10^{-18}}{4} }[/tex]
[tex]\mathbf{E=5.45 \times 10^{-19}}[/tex]
Learn more about ionization energy here:
https://brainly.com/question/16243729?referrer=searchResults